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Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g.,
atrajectory ‘p” returns to its initial conditions after some fixed timrg. Our aim is to investigate the spectrum
{71,72, ...} of periods of the periodic orbits. An explicit formula for the densityr)=X,6(7— 7p) is
derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed
into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are
given by the imaginary part of the complex eigenval(Bsielle-Pollicott resonancgsFor large periods,
corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative
formula for p(7) in terms of the zeros and poles of the Ruglléunction is also discussed. The results are
illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical
properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also con-
sidered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution
operator of chaotic billiards.
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I. INTRODUCTION to the eigenvalues of the classical evolution operator, the
so-called Ruelle-Pollicott resonances. These resonances,
In chaotic Hamiltonian systems, the unstable classical pewhich generically are defined by a set of complex numbers
riodic orbits form a set of measure zero among all the postdenoted{y}), characterize the decay of correlations in the
sible trajectories. However, as has been emphasized maniyne evolution of phase space densiti8$ and provide im-
times, the periodic orbits are of great interest. In particularportant information about the transport properties of the sys-
they are very important in the study of the structure of thetem. For an introduction see Ref4,5].
phase space dynamics and the transport properties of the mo- The set of period§r,} can thus be explicitly related to
tion. Another relevant aspect of these orbits is their temporadnother, more fundamental, set, the Ruelle-Pollicott reso-
behavior. At a given energy, the perioggsof all the periodic  nances{y}. In this way, the properties of the,’s can di-
orbits p form a discrete set{7p}={7y,7,,...,7,...}.  rectly be related to the properties of thés. The results
Many properties of this sequence are of interest in, e.g., unallow, in particular, to make a systematic analysis of the
derstanding the quantum mechanical behavior of chaotic systructure of the spectrum of periods, focusing from the larger
tems. For example, semiclassical theories establish a linlowards the smaller scales.
between the statistical properties of the quantum eigenvalues Semiclassical theories in the manner of Gutzwiller or
and those of the classical periofig,}. One is led to answer Balian-Bloch[6,7] describe the density of quantum states in
questions like how the number of periodic orbits grows withterms of the periodic orbits of the corresponding classical
increasing period, or what are the correlatidifsany) be-  system. Here, in turn, we establish a connection between the
tween the periods of different orbits. In this respect, as redensity of periods of the periodic orbits and the Ruelle-
gards the first question, one of the main results in the field iollicott resonances, i.e., the eigenvalues of the classical
the exponential growth of their number with increasing pe-evolution operator. In this way, our results allow to establish
riod [1]. Concerning the second, there is no definite answera link between the eigenvalues of the quantum and classical
but semiclassical arguments based on random-matrix theogwolution operators that, hopefully, will be useful to more
(RMT), suggest that there exist correlations between the orelearly elucidate their properties and correspondences.
bits (orbits with similar period repel each oth¢g]. Not much is known at present about the distribution in the
Our purpose is to further explore the properties of thecomplex plane of the eigenvalues of the classical evolution
spectrum of the periodgr,} of the periodic orbits of fully  operator of chaotic Hamiltonian systerfsee, e.g., Ref4]).
chaotic systems. We restrict the indep™to the primitive  Paraphrasing Ozorio de Almeid&], it is fair to say that,
orbits only, i.e., repetitions of a given orbit are excluded. Ourthough of great theoretical interest, the formula to be derived
main result is an explicit formula that relates the density ofbelow merely relates our ignorance of the periodic orbit
periods of primitive orbits, spectrum to the even more mysterious maze of the eigenval-
ues of the classical evolution operator. However, there is an
increasing effort to understand the properties and physical
p(T)=z S(r—1p), (1) ?nterpretation of the Iatte_r, and their study is a central them_e
P in several of the most interesting recent developments in
classical chaotic systems, and of their quantum counterparts.
For instance, in quantum systems the Ruelle-Pollicott reso-
*Unité Mixte de Recherche de I'Universiaris Xl et du CNRS. nances lurk behind many interesting effects. They provide
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the most simple explanation of the long range nonuniversasity p(7) will be expressed in terms of the eigenvalues of the

correlations observed in the quantum spectra of boundeévolution operator.

Hamiltonian systemf9,10], and show up in experiments that  The starting point is the function

measure the transmission through open microwave chaotic .

cavities[11]. The spectrum{y} is also a central issue in

recent field theoretic appr:;{a(}:hes whose aim is to demon- P(T):% 21 TpS(T=I 7). 2

strate the validity of RMT in chaotic systeni$2], and ap-

pears in some mathematical models of quantum chaos, thehe indexr accounts for the repetitior(®r multiple travers-

Riemann zerog13]. More recently, several studies have |5 of a given primitive periodic orbit p.” The function

clarified the correspondence between the quantum and clap( 7) is naturally associated with & function. To see this,

sical propagators for discrete maps in the presence of noisge reproduce a well-known derivatiga], which consists in

[14]. including inside the double suii2) a factor expb(r—r,)],
The starting point of our study is an expression of theyhose value is 1 because of thifunction b is a real

trace of the evolution operator as a sum over the periodigositive constant Then, expressing thé function asd(r
orbits (Sec. Il)). An inversion of that formula, based on the _”p):(zw)—lﬁ exffig(r—rr)ldé, and making the

Mobius inversion technique, is implemented. Assuming tha
the spectrum of the evolution operator consists of isolate
resonances, the inversion leads to a general formula for the
densityp(7) in terms of the eigenvaludsy} (Sec. IV). Itis P(7)=
also shown, in the same section, that a natural decomposition
of the density emerges, where resonances located on the regal

hange of variable§= —iw, P(7) takes the form

e
2

br
i

o im
2 E Tpe—berf e“’(T_”P)dw.
A .

p r= joo

axis determine the average or smooth behavior of the densit or b positive and sufficiently large, the sums are conver-
ent, and can therefore be interchanged with the integral.

while oscillatory interferent terms arise from the complex2~" h d Ki he additional ch f variabl
resonances. An alternative and mathematically more accural?'N9 that, and making the additional change of variables

formula for p(r), based on the Ruellé function (instead of S~ @ TP, we now get,
the determinant of the evolution opergtas first presented 1 (btis
in Sec. Il. It serves as a reference for the calculations of Sec. P(7)= dse” 9

IV, and complements the results obtained. Both approaches 271 Jp—iee Js
are compared in Sec. IV. Two illustrative examples are
worked out in Sec. V. The first one is the geodesic motion irFinally, using the expansion In{ix)=—X_,x"/n, we obtain
a billiard of constant negative curvature. The spectrum of théhe relation
evolution operator can be explicitly computed in this case. _
This allows to write down a formula for the density of peri- P(r)= ifmmdse”ilnz ©
ods of the periodic orbits, thus illustrating the general ap- 271 Jp—io gs TRH
proach of Secs. Il and IV. The results reproduce, in our for-
malism, those of Ref15]. The second example is based onwhereZg(s) is the topological or Ruell¢ function[16,17,
the Riemanry function. Though the dynamical basis for this
model is hypothetical, it is included here mainly to stress the [ (1—e5)-
existing analogies and similarities with known results in ana- Zr(S)= 5 (1=e %),
lytic number theory. Finally, Sec. VI contains some general
remarks and conjectures concerning the spectrum of the evéer Re(s) large.
lution operator, inspired by the results of Sec. V and quantum Equation (3) allows to make a connection between the
chaos theory. Special emphasis is put in the connection witgum (2) and the analytic properties afr(s). In order to
the statistical fluctuations of quantum eigenvalues angroceed we thus need some information about the latter. In
random-matrix theory. We also show that important qualitafact, for certain classes of hyperbolic systems, it can be
tive differences exist between the spectrum of the classicalhown thatZg(s) is analytic for Re$)>hyy,, wherehyy is
evolution operator of smooth flows and that of discrete mapshe topological entropy, and has a meromorphic extension to
the whole complex plangl7]. Restricting our analysis to
this case, from Eq(3) an explicit and simple formula fol-
lows (with b>h,,, and closing the path of integration to-
wards the left part of the complex planét expresse®(7)

In this section the aim is to derive an explicit formula for in terms of the location in the complex plane, denoigdf
the density of periods of the primitive periodic orbits, Eg. the singularities oZg(s),
(1). The density will be expressed in terms of the zeros and
poles, located in the complex plane, of a particular function, P(r)=2 g, e” (5)
the Ruelle function. To simplify, we will from now on 7
make reference to the zeros and poles of the Ruelienc-
tion as its “singularities.” The calculations presented in thisIn this equation the integey, is the multiplicity, and is posi-
section serve as a basis for those of Sec. IV, where the detive for poles and negative for zeros. The indexhas a

r=1 r

()

4

Il. THE DENSITY OF PERIODS OF PERIODIC ORBITS:
RUELLE ¢ FUNCTION
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double significance: it serves as an index to enumerate the Inversion problems have many important physical appli-
singularities, and also denotes their location in the complexations, but are in general difficult to solve. In our case, the
plane, ats= 7. inversion of Eq.(6) will be based on the Muius inversion

Two alternative and distinct formulas fdt(7) are thus formula. This is a technique developed in the nineteenth cen-
available, one as a sum over the periodic orbits, (Bf.the  tury, which has been extensively exploited in number theory
other as a sum over the singularitieszf(s), Eq. (5). Itis  [18]. More recently, it has found concrete applications in
convenient to rewrite Eq(2) in terms of the density, using physics, such as, for example, for computing the phonon
the definition(1), density of states from experimental measurements of the spe-
cific heat of solid419].

The inversion proceeds as follows. Consider the sum

T)—Tz 2p(T/I’) (6)

From now on, the idea of the computation is the following. If S = E MP(T/m) (7)

we manage to invert equatiai®), and express the density

p(7) interms ofP(7), we are done, because E§) can then

be used forP(7), and the final output would be an expres- where u(m) is the Mdius function[18]. This is a number-
sion of p(7) in terms of the singularities; of the function theoretic function, whose properties are based on the prime

Zr(S). decomposition of the integen. It is defined as
|
1 if m=1
w(m)=4 (=¥ if m isa product ok distinct primes
0 if m has one or more repeated prime factors
|
[and thus wu(m)=1,-1-10-1,+1,... for m Equation(8) is our first result. It expresses the density of
=1,2,3,4,5,6. .., aquite erratic functiof If, in Eq. (7), we  periods of the primitive periodic orbits in terms of the sin-
use forP the series defined by the right-hand sides) of  gularities of the Ruellg function.
Eq. (6), we obtain The right-hand side of Ed8) should, in principle, repro-
duce a series 06 peaks located, according to the definition
w(m)p(7/rm) * (m)p(rln) of p(7), at the periods of the primitive periodic orbits. In
S;=r — = 2 Z —_— order to better display the structure of H), and see the
mr=1 (rm) n=1m/n correspondence with the series &fpeaks, it is useful to
= 7p(7) consider a decomposition of the density in two parts,
where the sunk,,, runs over the divisorsn of n. The last p(7)=p(7)+5(7). ©

equality is the key point of the inversion technique. It fol-

lows from a remarkable property of the Mias function, This decomposition is associated with a classification of the
namely,> ,nu(m) =&, 1. Finally, combining the last equa- resonances into two distinct sets, each set contributing to one
tion with Eq. (7), we obtain an equation for the density, of the two terms in the rhs of E¢9). BecauseP(7) is a real
function, the Ruelle/ function satisfies a simple functional
equation[which follows from Eq.(3)],

p(7)= E —”( )P(T/ m)=— E “(m g,e”"™.
’ ®) [Zr(S)T* = Z(s¥)

The sum ovem has been truncated at a value equal to thgthe star denotes complex conjugaté singularity % of
integer part ofr/ 7., Wherern, is the period of the short- Zg(s) is therefore either simple and real, or complex and

est periodic orbit of the system, comes in conjugate pairs symmetric with respect to the real
axis. This property is at the origin of the decomposit{&j
Me=[ 7/ Tminl- with the real singularities contributing jo( 7), and the com-

plex ones tdp(7). If the location of the resonances in the

This truncation is a consequence of the fact fgt) =0 for ~ COMPIex plane is written as

7< 7min Lcf EQ. (2)], and thereford®(7/m)=0 for m>m in
Eq. (8). n=q,*it,,
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with g, real andt,, real positive, then the two contributions the complex plane of the additional real singularities, and

to the density can be expressed as how their contributions compare to the corrections that come
from ;.
o 1 ,U«(m The remaining contribution to the densipf ), behaves
P(T)I— > g,edhm (100 quite differently. This term is responsible for the discrete

=1 m S i . ;
T m=1 7R nature of the spectrum of periods of the periodic orbits. On

top of the average behavigr, each complex singularity of
Zg(s) adds an oscillatory term to the density of periods. It is
the interference of the oscillatory contributions of all the
complex singularities that, formally, reproduces thpeak
structure of Eq(1).

The amplitude of each oscillatory term is given by the

where in Eq/(10) the sum is made over the real singularities €xponential of the real pad,, of the smgularlty In contrast,
of Zx(s), whereas in Eq(11) it is made over the complex the inverse of the imaginary partm’mt , is the period of
ones located in the upper half part of the complex plane. the oscillation. Singularities with the smaller imaginary part
The first contribution,p(7), is given by a sum of real describe long range fluctuations with respect to the smooth
exponential terms. It has therefore a smooth dependence dehavior of the density, on scales which may be much larger
7, and describes the average properties of the density. It réhan the typical time that separates two neighboring orbits
produces the behavior of the singular st whenp(7) is  (terms withm>1 are of longer range, but their weight is of
smoothed on a scale which is large compared to the averadewer order in the limitr—). As singularities with increas-
spacing betweed peaks. To reproduce the average part ofing imaginary part are included, details pfr) on smaller
the density of periods we thus need to know the location ofcales are resolved. For instance, to distinguish individual
the real singularities. It is known, in particular, that in hyper- peaks ofp(7) located around- requires complex singularities
bolic systems its rightmost real singularity, which controlswith imaginary part of the order of the average density of
the asymptotic growth whemr—o, is a simple pole as periods,t,,~e“top’/7-.
=hyep [1], Equation (8) provides therefore a harmonic decomposi-
tion of the density of periods, where the frequency of each
70= o= Niop, 9y,=1. (12 sinusoidal wave is given by a fraction of the imaginary part
of a complex singularity. Since arbitrary high frequencies are
needed to reproduce &peak, Eq.(8) also implies that, ge-
nerically, singularities with arbitrarily large imaginary part
should exist. But we have no additional information about
Niop” their distribution in the complex plane.
po(7)= . T, (13 Equation(8) can be integrated with respect tdo obtain
T a harmonic formula for the cumulative distribution, or count-
ing function of the periods. This function is defined as the
We thus recover, to leading order, the well-known exponennumper of primitive periodic orbits whose period is smaller
tial growth of periodic orbits in chaotic systems, with the than 7,
typical rate given by the inverse of the topological entropy
[1]. However, the inversion procedure employed here allows r
to go beyond that result, and obtain subdominant corrections N(7)= f p(x)dx=2, O(1—7y), (19
to the average growth of the density. It is remarkable, indeed, 0 P
that the contribution of the pole at=h,, gives also, from
Eq. (10), a series of exponentially large corrections to the

and

7)(7)— Z “(m) EOgne%T’mcos{tnT/m), (11)
n,t,]>

The presence of this pole implies, keeping the temm1 in
Eq. (10),

where0 is Heaviside’s step function. The result of the inte-

asymptotic behavior, with signs depending on thébiag ~ dration is,
function,
M(m) (7T
1 M Mo Mo ghtopr3 N(7)= 2 nE'(ﬁ)' (16)
- _ 2 hmp‘r/m: _ _
T e T 2T 37

where Ei is the exponential integral function. Similarly to
— (14 Eq. (8), this expression is, formally, exact. The same decom-
position and general remarks as for the density apply to this
The first corrections lower the density, while the first positivefunction.
one occurs fom=6.
. Besides the pole dt,,, other real singul.arities citR(s), IIl. THE TRACE OF THE EVOLUTION OPERATOR
with real partq, <h,,, add further subleading corrections to
the density of periods. Those located in the negative part of In the preceding section, we described the periodic orbit
the real axis contribute with exponentially small corrections.density and the counting function in terms of the singularities
We are not aware of any generic result about the location if the Ruelle/ function. In this and the following section we
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will introduce an alternative description of the density, basedhat led in the preceding section from E@) to Eq. (3) can

on the eigenvalues of the classical evolution operator. Oube followed forR(7). They lead to a connection between the
motivations for doing this are the following. On the one trace of the evolution operator andunction. We will not
hand, an explicit relation between the periodic orbits and theepeat them here, but only mention that, for reasons to be
eigenvalues of the evolution operator is of clear theoreticalinderstood below, the sign in the change of variables be-
interest. It helps in understanding the properties of both setsweené andw is the opposite here. The result, analogous to
as well as their correspondences. On the other hand, the coRg. (3), is
nection is a central issue in the study of the quantum and
classical behavior of chaotic systems and allows, via semi-
classical techniques, to relate the quantum and classical
eigenvalues.

Before presenting in Sec. IV the derivation of the alterna-wherea is a real constant.0. The functionZ(s) is called the
tive description of the density of periods, we need to previ-spectral determinant, or Smajefunction, and is defined as
ously introduce some definitions and basic equations relateld,16]
to the classical evolution operator.

Consider a classical system whose dynamical state is de- €S
fined by the phase-space coordinateAfter a time 7, the Z(s)=ex;{ _; rdetM’—1)|
point x evolves into a new statg=f (x). The kernel of the ’ P

evolution operator of the deterministic motion is defined by arhe complex variable has units of inverse of time. Equation
Dirac distribution, (20) relates the trace of the evolution operator to the analytic
structure of the functiorZ(s). Under some general condi-
Ly x)=8(y=1,(x)). (17 tions valid for a certain class of hyperbolic systefasd

We shall assume throughout the paper thdk) describes analogous to those as?“”?ed N the precedmg sect|9n for
. N Zg(s)], the Smale function is generically an entire function
the conservative smooth flow of a closed Hamiltonian sys:

tem. Open systems are not treated here, but may be consiE?l-alr’é)Z I\(/Il.oeré ggra:yﬂgafg dazlalnglmtﬁ: z?rlgttjurlgstgis)c Oli]n;IeX
ered as well within the same formalig]. P ' P yt y

. . ' arise, like, for example, branch cuts that lead to power law
The trace of the evolution operator is defined as decays in intermittent system8]. We will ignore here these
other possibilities. Assuming, therefore, th&ts) is entire,
R(7)= f dxL(X,X), (18 from Eq. (20) the trace of the evolution operator can be
expressed ag20]

where x is integrated over the phase space. The function

L,(x,X) is the conditional probability density for the system R(7)=>, g, e, (22
to be at the poink by the timer if the initial state was at the Y

same point.R(7) is therefore proportional to the classical

return probability at timer. A trajectory starting ak and . : .

comingpback to t);\e same point ather a t)i/mdefinegs a closed points{y} define thecomplex and discrejespectrum of the
loop in phase space. Any phase-space closed loop definesegolution operator. In this equation, and in the rest of the
cyclic motion, because the system returns to its initial conPaper the index has a double significance: it SEIVes as an
ditions. For a fully chaotic dynamics, an explicit expression!ndex to enumerate the zeros, and also denotes their location

. 7 . in the complex plane, &= vy.
thEi(r:e): dl?ntgg[szg]f the periodic orbits of the system was The spectrun{y}, given by the zeros of the entire func-

tion Z(s), characterizes the relaxation towards equilibrium

1 atioe

Jd
= ST
R(7) 2= I dse &Sln Z(s), (20

. (21

where they's are the zeros oZ(s). The complex set of

% of classical statistical ensemblg3]. The complex zeros are
R(7)=> >, #5(7_”0_ (199  usually called Perron-Frobenius or Ruelle-Pollicott reso-
p =1 |de(M,—1)| nances. We shall, however, often refer to thiole set of

zeros(real and complexasresonances

The sum is made over the primitive periodic orbisand The positive indexg,, in Eq. (22) is the multiplicity of the
over their repetitiong. Each orbit has a period, and a resonance. The physically relevant modes being decaying
monodromy matrixM . The latter describes the stability of ones, the corresponding resonances lie in the positive half
the orbit. The l‘actotdet(M[)—l)rl is related to the overlap plane Ref)=0 [this justifies the choice of sign in the deri-
between an initial cloud, centered initially around the ophit vation of Eq.(20)]. It is, in general, a difficult problem to
and its iterate, after a time=r 7, in a linear approximation. determine analytically the spectrum for a particular sys-
The functionR(7) has a peak at the period of each primitive tem. However, in Hamiltonian systems, where the energy is
periodic orbit, or at one of its repetitions, with a weight conserved, there exists a well defined long time equilibrium
inversely proportional to its stability. state, given by the invariant measure on the energy shell with

Notice that Eq(19) is similar to Eq.(2), with the impor-  the microcanonical weight. The existence of this equilibrium
tant difference of the stability factor in the denominator in state is manifested in the analytic propertiesZ¢§) by the
the former. In spite of this difference, similar steps as thoseresence of a simple “ergodic” zelid®], located at
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¥%=0, g, =1 (23 expression op(7) in terms of the eigenvalueg. It is con-
0 venient, to simplify the computation, to define a new func-

The ergodic zero, located at the origin, corresponds to th#0N

unique invariant measurén the sense of statistical en-

sembleg in fully chaotic systems. From Ed@22) it follows G = |de(M ,—1 E
that this very general property implies that lim,R(7) ()= T R(7)=
—1, which expresses the equiprobability to find the system

in any phase space point. This fixes the normalization of th@hen, consider the sum

trace of the evolution operator, or “return probabilitythe

volume is set to L Other resonances, with Rg(>0, are

associated with decaying modes that describe the process of S= 2 w(m)G(r/m)/m?,
relaxation of an initial cloud towards equilibrium. m=1

2p (7/r). (26)

where we again make use of the Mos functionw(m). The
IV. THE DENSITY OF PERIODS OF PERIODIC ORBITS: sumsS, is evaluated in two different ways. First, using f&r
RUELLE-POLLICOTT RESONANCES the series expansion in the rhs of E6). This gives

The two expressions of the trace introduced in the preced- o %
ing section, Eqs(19) and(22), relate a sum over the eigen- g — 3 p(m)p(r/rm) =3 '“(m)p(T/n)
values of the evolution operator to a sum over all the peri- mr=1 (rm)? n=1 m/n
odic orbits of the system. Similarly to Sec. II, we can exploit
this connection to derive an explicit formula for the densitywhere the sunk ., is made over the divisors of n. The
of periods of primitive periodic orbitsp(7), but now ex- last equality follows, as in Sec. Il, from the property
pressed in terms of the eigenvalues of the evolution operatc¥ mnu(m) =, ;. The second way to evalua$g is using for
(instead of the singularities of the Ruelfefunction). This G the first equality in Eq(26). Combining both, we obtain,
formula will take again the form of a harmonic decomposi-

=p(7),

m,
tion, i.e., the density will be expressed as an interferent sum RN M( m)
over oscillatory terms. The frequency of oscillation of these p(T)_ 2 |detM ;i = D)[R(r/m).  (27)
terms will be given by the imaginary part of the Ruelle-
Pollicott resonances. As in Sec. Il, the sum ovem has been truncated at a value

To computep(7), now the starting point is Eq19). To  equal to the integer part af 7, Wherery,;, is the period
expressR(7) in terms of the density of periods, the main of the shortest periodic orbit of the system. This truncation is
obstacles are the stability factofslet(M,—1)|. These are a consequence of the fact ttfr) =0 for 7< 7, [cf. Eq.
not only functions of the period of the orbits, but depend alsq19)], and thereforR(7/m)=0 for m>m, in Eq. (27).
on their stability. However, in fully hyperbolic Hamiltonian Equation(27) gives an explicit connection between the
systems, where periodic orbits are dense in phase space, thensity of periods and the trace of the evolution operator. To
stability or Lyapounov exponents of long orbits are the samexpress the density in terms of the eigenvalues of the evolu-
for almost all orbitg23]. Therefore, for long orbits the sta- tion operator, we simply use E(R2). This gives
bility factor becomes only a function of the period,

1 C
|de(M,—1)|=|de(M] ~1)|, 7 (24) == 2: | detM - 1>|E g,e 7™
2
Within this approximation, and using the definitigl) of the 28)
density, the functiorR(7) may be rewritten as Equation(28) is our main result. It provides an alternative
" formula for the density of periods of primitive periodic or-
R 2 1 y bits. The structure of E(28) is very similar to that of Eq.
(=12 r2|de(M’, —1)] p(rlr). (8), with two important differences: it includes the stability

factors, and the sum is made now over the eigenvalyes
The factor|det(M" — 1)| is in fact a function of the variable ©f the classical evolution operatégiven by the zeros of

_ Z(s)], instead of the singularities af(s).
rr (cf. for instance, Ref[4]), and thereforddet(M',, —1)| R e
=|det(M,—1)| depends only on the period. Th/(ra density The right-hand side of Eq28) should, in principle, also
then takes the form reproduce a series @ peaks located, according to the defi-

nition of p(7), at the periods of the primitive periodic orbits.
Since the Smalé function also satisfies the functional equa-

T 1 X
R( T)= m ;l r—zp(T/r). (25) tion

[Z(s)]* =Z(s")
From now on, the situation is similar to that of Sec. II. We
should invert Eq(25), and express the density 7) in terms  the density can be, as in Sec. Il, decomposed into two parts,
of R(7). Then, using Eq(22) for R(7), we will get an p=p+p, where real eigenvalues of the evolution operator
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contribute top, and complex symmetric ones fa If the The remaining contribution to the densify7), gives the
location of the resonances in the complex plane is written asscillatory terms. In this approach, based on the eigenvalues
. of the evolution operator, the amplitude of each oscillatory
Y=aq,*Iit,, term is determined by a competition between the exponential
. N growth of the stability factofdet(M ,;,,—1)| and the expo-
W|th_ g, andt, r_eal posmve(or zero,_then the smooth and ential decay o~ 9™, Using the asymptotic approxima-
oscillatory contributions to the density can be express as  tjon (32) for the determinant, general arguments indicate that
the complex resonances with the smaller real part should be
z |d M1 S g e ~ayrim. !ocated_on the strip_@q7_< Niop, anql th_e_refore that_the lead-
im ing oscillatory contributions have individual amplitudes that
(299  grow exponentially in tim¢26]. The inverse of the complex
part, Zwmt;l, is the period of the oscillation. Resonances
and with the smaller imaginary part describe long range fluctua-
" tions on top of the smooth behavior of the density, on scales
~ 2 o m(m) that can be, depending on the valuetpf much larger than
(== 2 |detM ;= 1)] the typical time that separates two neighboring ortigsms
with m>1 are of longer range, but their weight is of lower
order in the limit ——x). As resonances with increasing
imaginary part are included, details @fr) on smaller scales
are resolved. For instance, to distinguish individual peaks of
respectivel)f R* denotes the positive real axiscluding the  the density located around a periedequires complex reso-
origin), andC™* the upper right sector of the complex plane nances with imaginary part of the order of the average den-
How these results compare to E¢80) and (11)? Let us ~ Sity of periodst,~ e/ 7.
start the comparison with the average part. In the limit ~ Equation(28) therefore provides an alternative harmonic
—, the leading order contribution to EGR9) is given by  decomposition of the density, where the frequency of each
the real zero with the smallest real part. That zero is knownginusoidal wave depends on the imaginary part of the posi-
it is the ergodic zero denotesl, in the preceding section, tion inthe complex plane of the eigenvalues of the evolution
whose location at the origin is the only generic propertyoperator(Ruelle-Pollicott resonancgsSince arbitrary high
known about the spectrum of eigenvalues of the evolutiorfrequencies are needed to reproducé peak, Eq.(28) im-
operator in hyperbolic systems. Keeping only the teym plies that, generically, resonances with arbitrarily large

76%

X 2 g,e %Mcogt,r/m), (30)

yeC+

=0 andm=1 in Eq.(29), we obtain imaginary part should exigsimilarly to the Ruelle/ func-
tion).
_ |detM ,—1)| Equation(28) can be integrated with respecttdo obtain
pyT)= o T (31) an alternative formula for the cumulative distribution, or

.
counting function of the periods, E@l5). To compute the

Thus, in the limitr—o, the leading order behavior of the integral, an explicit form of the determinant is needed, which
average density of periods is proportional to the stabilitydepends on the dimensionality of the system. However, as-
factor of the orbits. When compared to the leading ordeymptotically the approximate expressi¢82) can be used.
obtained in Sec. Il from the leading pole of the Ruefle This yields

function, Eq.(13), this result implies

|detM ,—1)|=eMor", 71— c0. (32) N(T)~2 ad )2 gyEi((htop— y)%), (33

This correspondence is equivalent to the Hannay—Ozorio de
Almeida sum rule, derived in Ref$23,24 from a unifor-  which has to be compared to E4.6). The same decompo-
mity principle. It expresses the counterbalance between thsition and general remarks as for the density apply for this
exponential proliferation of the periodic orbits and thefunction. The main contributions to the smooth part are ob-
growth of their(positive instability. It is also a consequence tained from the ergodic zerg,=0, and oscillatory terms are
of Pesin’s equality, which relates the topological entropy togiven by the complex resonances.
the sum of the positive Lyapounov exponef®@§]. Here it We have therefore obtained two alternative and distinct
has an analytic significance, it expresses the correspondendescriptions of the density of periods of the periodic orbits.
between the pole afty,, of the Ruelle{ function and the From a mathematical point of view, E(B) is preferable to
ergodic zero at the origin of the Smajefunction. Eqg. (28), because in the derivation of the latter we have
The higher order termen>1 obtained from the ergodic ignored some possible fluctuations of the stability factors
zero in Eq.(29) give for the average density a contribution that may occur at short times. However, from a physical
equivalent to Eq(14). Besides the ergodic zero, other real point of view the latter description is clearly more interest-
resonances ((,>0t,=0) of Z(s) add further subleading ing, since the Ruelle-Pollicott resonances, or eigenvalues of
corrections to the density of periods. However, no generi¢he classical evolution operator, have a clear and intrinsic
result concerning their location is known. physical content, directly related to the classical dynamics.
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In practice, it is interesting to exploit both approaches. Thigllustration of the general results obtained previously. The
leads to consider in more detail the relationships betweegeodesic motion on a space of negative curvature has long
them. served as a paradigm of classical and quantum chaotic mo-
As we have shown, the ergodic zeroZy(fs) and the pole tion [6,27].
of Zg(s) athy,, carry similar(though not exactly equivalent
information. The pole at,,, leads to the smooth contribution A, Geodesic flow on surfaces of constant negative curvature
(14), whereas the ergodic zero generates a series which is
identical but wither™™ replaced byldet(M ,;,—1)|. It is
only in the asymptotic approximatio(82) of the stability
factor that their contributions coincide. It is interesting to
explore the correspondence between the analytic structure
both functions in the latter approximation. The simplest pro
cedure is to make, in Eq21), the replacementdet(M,,
—1)|~eMe¥ ™. This approximate Smalé function takes the
form

We are interested in the geodesic motion on a two-
dimensional hyperbolic geometry. In particular, we consider
billiards on surfaces of constant negative curvature, the so-
lled Hadamard-Gutzwiller model. We will not enter into a
_detailed description of the classical and quantum motion in
such surfaces, and refer the reader to the excellent introduc-
tory paperg27]. For these models Gutzwiller’s trace formula
is exact{ 28]. This allows to express the periodic orbit length
spectrum in terms of the quantum eigenvallEs]. We will
(5o 7 here rederived the formula for the length spectrum as an
} illustration of the general formalism based on the eigenval-

Z(s)wexp{ —E

p.r r ues of the evolution operator and singularities of the Rugélle
function.
:H [1— e~ NP p] Consider a compact}and closed surface of aean the
p two-dimensional Poincardisk, constructed from a suitable

bounded domain on which appropridigeriodig boundary
conditions have been defined. The corresponding classical
geodesic motion includes a gebf primitive periodic orbits
(closed geodesics on the compact surfad® start with,
consider the corresponding Selb&rdunction[29],

=Zg (hiep—9), (34)

where we have used the expansion =—-=,_,x"/n to
compute the sum over the repetitions. In this approximation
the poles/zerog of Zgx(s) are mapped into zeros/polesof
Z(s), located aty=hy,,— 7. This correspondence is ex- *

pected to hold for long times, where the approximation of the zs(s)=[1 Il (1—e M), (35)
stability factor made before is valid. Using the location of the p n=0

singularities ofZg(s), the mapping(34) should therefore The first product is defined over the primitive periodic orbits

accurately describe the location in the complex plane of the . ; . . . ) .
zeros ofZ(s) that are responsible for the asymptotic behav-P of length ¢, (in appropriate units This function differs in

ior of the density. Those are the zeros whose real part igs definition fro_m the _Smale and Ruelidunctions.Z(s) is
small. It maps, in particular, the pole Bk(s) athy,, into the zinlfar(\g)re f_u?/cztfp, with _zero.s (I(ﬁcat_eg Eﬂ(‘? 53) zszﬁlg
ergodic zero ofZ(s) at the origin. In contrast, resonances .’ $=1/2xip,, 9=0,; (¢) s=0, g=A/(2m)+1;

- ‘o : d s=-k, k=1,2,..., g=(k+1)A/(27); where p
with real part far away from the origin need not be in corre—( S e
spondence. Moreover, the approximatié®4) produces a — VE«—1/4, a=1.2,.... TheE, are the(quantum eigen-

function Z(s) which is meromorphic, rather than entire, as values of the Laplace-Beltrami operator on the surface, and

; ; the p, are the corresponding wave numbers. The integer
assumed before. Globally, the mappif3) is clearly false. a A
Y PPy y denotes the multiplicity of the zeros. In cags they depend

on the degeneraay,=1 of the eigenvalu€& . Because of
V. ILLUSTRATIVE EXAMPLES topological constraintsd/(4) is a positive integer.

The aim now is to find systems where the analytic struc- The topological or Ruell¢ function (4) is easily obtained
ture of Z(s) and Zx(s) can be computed, thus allowing to from Zs(s). It is given by[29]
write down explicitly the formula for the density of periods
of the periodic orbits, and to compare and illustrate both ZR(S):]._.[ (1—e Sp)~1=
approaches. Another interest of such a study is to gain some P
insight into the distribution of the resonances and singulari-
ties in the complex plane in concrete examples. The explicihe analytic structure of this meromorphic function directly
computation of the analytic structure of tefunctions is a  follows from that of Zg(s) (see the left part of Fig.)1 (a)
quite difficult task in general. However, it is doable in somepole ats=1; g,=1; (b) poles ats=1/2+ip,, g,=d,; (¢
cases. Two examples are treated in detail. The first one is th@ole ats=0, g,,=A/(2m); (d) zeros ats=—1/2*ip,, g,
geodesic motion on a two-dimensional manifold of constant=—g,,; (€) pole ats=—1, g,=A/(27)—1; (f) poles ats
negative curvature. The second, a mathematical model, is —k, k=23,...,9,=A/(27).
based on Riemann’s function. Both have their own pecu- The rightmost pole of this function is real and located at
liarities: the somewhat unphysical character of the motion irs= 1. This implies thah,,,= 1 in these systems. This pole is
the first, the purely speculative dynamical interpretation inresponsible for the leading asymptotic average growth of the
the second. In spite of them, they both provide a concret@umber of orbits, and provides subleading corrections as

Zg(s+1)

749 (36)
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Notice that each of the terms in the seri@8) diverges in
the limit —0. This divergence is due to the splitting of the
density into two partsp andp, whereas the sum of the two
terms is well behaved.

Consider now the spectral determinant or Smaleinc-
tion (21), whose zeros are the eigenvalues of the evolution
operator. Another peculiar feature of the Hadamard-
Gutzwiller model is that all the periodic orbits have the same

FIG. 1. Analytic structure close to the origin of the Ruelle zeta Lyapoqnov exponen(equal to 1_' Mp can be ertten+as a
function (left) and of the spectral determinaiRuelle-Pollicott 2x2 diagonal matrix whose diagonal elements afé®.
resonances, righfor a compact and closed billiard on a surface of Therefore,
constant negative curvature. Crosses are poles, circles are zeros.

Multiplicities and exact positions are given in the text. |de{M,—1)|=2[coshr ) —1]. (40

Zg(s)
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well. There is an infinite number of other real poles with Expanding the inverse of the determinant fiet(M,
d,<hyp, Which also provide subleading corrections to the—1)|_7_122k:1kefr p, and computing the_sum over the
average part. The complex zeros and poles, aligned here d@petitionsr, from Egs.(21) and(40) we obtain

two different vertical lines in the complex plane, contribute

o]

to the oscillatory part. There exist poles and zeros with arbi- (k=) (K
trarily large imaginary part, as generically requir@fl Sec. Z(S):l_p[ kHl [1-e (9]« (4D
).

Taking into account separately the contributions of theysing the definition of the Ruelle and Selbefdunctions,
real and complex singularities @ir(s), from Eq.(8) a for-  £q (41) can be reexpressed as
mula is obtained for the length spectrum of the periodic or-

bits on a compact and closed hyperbolic surfaséh the o Z4(k—s)
speed set to 1z stands here for the length of the orbits, z(s)=1] ZK(k—s)= 11 s
k=1 k=1 Z§(k+1—s)

©

(42

=p(7)+p(7), is the length of orbits (3
plry=plr)+p(n). g S Further manipulations of the latter equation lead finally to

with o
Z(s)=kHl Zg(k—s). (43)
Me —7/m =
H(T):l z mer/m 1_e—27/m+ie— _ _ _ . _
Tm=1 M 2m (1—e” M) SinceZg(s) is entire, it follows from the last expression that
(39 Z(s) is also an entire function. The analytic structureZ¢s)
follows from that ofZ4(s), with zeros at(cf. the right part
and of Fig. ) (@ s=0, g,=1; (b s=k+1/2*xip,, kK
=012..., 9,= d.; (© s=k, k=12,..., g,=k(k
4™ um) +1)/.U(4.77).+2.. o . .
(== > ® sinh(7/2m) Y, g,cosp,r/m). This distribution of zeros satisfies the “generic” require-
Tm=1 M @ ments concerning the spectrum of the classical evolution op-

(39 erator of a hyperbolic systeni) all zeros have Ref)=0,
(i) there is a simple pole at the origilergodic zergp, and
Concerning the complex singularities, as mentioned beiii ) there are complex symmetric zeros with arbitrarily large
fore Zg(s) has two “critical” lines, one made of complex imaginary part. Using Eqi40), the density(28) is now ex-
zeros[located at Ref) = —1/2], the other of complex poles pressed in terms of the classical resonances as
[located at Ref) = 1/2]. Their superposition produces the os-

me

cillatory part’p(7). It is remarkable that the frequencies of 1 p(m) 2 o
the harmonic decomposition of the periodic orbit density are ~ P(7)= mzzl m ¢ "(1-e” ") zy g, e 77
directly related to the quantum wave numbers, a conse- (44)

guence of the fact that Selberg’s trace formula is exact. We

will come back to this point later on. The integrated versionysing the locations and corresponding multiplicities of the
of Eq. (37) for the counting functionN(7), was computed zeros ofZ(s) given above, and separating the contributions
and analyzed in Refl15]. For a specific hyperbolic billiard, of the real and complex zeros, it is easy to check that Eq.
we have numerically checked_that the deviations with respeqlas) is strictly equivalent to Eqg38) and(39). For the geo-

to the leading order behavidd(7)~Ei(7) observed in the desic flow on a constant negative curvature, the exact density
data were well explained by the subleading corrections is thus recovered from E@28), without any error. The rea-
>1 of the polen=hy,,=1 in Eq.(16). son for this is that in the present model the Lyapounov ex-
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ponents are constant, independent of the orbit. It follows that stability |de(M[)— 1)|—p'=e" P,
Eq. (24) is exact for any period, not only asymptoticaflyf.
Eq. (40)]. The last correspondence implies tigg,=1 in this hypo-

It is, however, interesting to remark that the two expres-+hetical dynamical system, which for simplicity we refer to
sions for the density are obtained from functions with veryas the Riemann dynamics.
different analytic structure. In particulafz(s) is meromor- We do not know the classical Hamiltonian behind the Rie-
phic and has two “critical” lines, one made of an infinitt mann dynamics, but the information contained in F4p)
number of zeros located at Ry —1/2, the other of an  concerning the periodic orbits is enough to write down the
infinite number of poles located at R 1/2. In contrast, trace of the corresponding classical evolution operator, Eq.
the spectral determinant is entire and, as complex zeros, h&s9). Using in the latter the corresponden¢éS), the trace is
an infinite number of parallel replicas of the quantum specexpressed as
trum located at Ref) =k+1/2, k=0,1,2.... Thecorrect

result(39) for the oscillatory part of the density is only re- “ log’p
covered when the whole set of complex resonance(sf R(7)=2, 2 —d&(7—rlInp), (46)
is taken into account. In contrast, the leading order pr=l p

asymptotic behavior— o of the density is controlled by the

ZREg((;)itltlge origin and the complex resonances located own R(7) in terms of the classical Ruelle-Pollicott reso-

The Hadamard-Gutzwiller model offers also the opportu—nances’ we need to compute the corresponding spectral de-

. . terminant, or Smalg function. The result, obtained from
nity to analyze the accuracy of the approximat{@d) of the Egs.(21) and (45) is [13]
Smale{ function, which holds asymptotically. It is obtained as-
by keeping only the first terrk=1 in Eq. (42). In that ap- Z(s)=¢"Y1-9) (47)
proximation, the analytic structure @f{s) consists now of a '
simple zero at the origin, complex zeros on the line $Re( where ¢(s) =37

— 1/ I | e i 32 and A n—,n "% is the Riemann zeta function. Con-
— /e, compiex poles on the fine RQ(—. , and zeros 4 trary to general expectations in bounded hyperbolic systems
s=k,k=1,2,.... Theanalytic structure is thus well repro-

duced for Re <1 Tth th o dthe | ; [21], Z(s) is not entire for the Riemann dynamics, but mero-
juced for e [the zero at the origin an € lowes morphic. The analytic structure &(s) follows from that of
line of complex zeros located at Rg) & 1/2]. The remaining

. i : =0, =1; | =1/2*it,,
structure is wrondthe degeneracy of the remaining real ze-gés): _(83 z.e(r(c:)) zgslesoats9=71+2k(b) kalez ats g/= ltl
ros is wrong, at Ref)=3/2 it has a line of complex poles *” o ' Y '

instead of the other i ¢ | i Assuming the Riemann hypothesis, the are real and
Instéad of zeros, the ofher ines ol complex zeros are MiSyqfine the position of theth zero of{(s) along the critical

ing). line, of multiplicity g,=1. The pole of the Riemanf func-

tion transforms into the ergodic zero 6§s). The position of

the complex Ruelle-Pollicott resonances coincide here with
Our second example is taken from analytic numberthe complex zeros of the Riemagnfunction, but these are

theory, which has inspired several developments in thaot zeros ofZ(s), but poles. Other real poles @&(s) are

theory of dynamical systeni80]. The results we are going generated by the so-called trivial zeros of the Riemd&nn

to present are based on a dynamical interpretation of th&unction, now located on the real positive axis. The global

Riemann zeros and of the prime numbers. This interpretatioproperties of the distribution of the singularities ofs) for

is by no means necessary, but it is a useful one becausethe Riemann dynamics satisfy the general requirements of

introduces the appropriate physical framework into the disfully chaotic systems, with the important oddness related to

cussion, and therefore facilitates the comparison with dythe occurrence of some poles in place of zeros.

namical systems. We therefore revisit here some well-known From Eq.(22) and the analytic structure &(s) (assum-

formulas in number theory, viewed from the perspective ofing g,=1), the functionR(7) may be written,

the present theory that connects the periodic orbits to the

eigenvalues of the evolution operator. e 37
The spectral interpretation of the Riemann zeros is based R(7)=1- —.—2e 2 cogt,7). (49

on the following identification. The imaginary part of each of 1-e et

the Riemann zeros is thought to be an eigenvalue of a qua

tum system with a classically chaotic limit with no time-

reversal symmetry. An analysis, based on a semiclassical i

terpretation of a formula for the density of the critical zeros

[31], shows that the set of prime numbers has to be identifie

to the set of periodic orbits of th@inknown classical dy-

namics. The analysis leads to the following mapping,

here the sum runs over the prime numbersTo write

B. The Riemann zeta function

[’

Fhe “anomalous” minus signs that appear in the rhs of this
rg_quation reflect, again, the presence of poleZ(g). The
physical interpretation of these signs, and of the closely re-
&ated minus sign that appears in front of the oscillatory part
of the density of the Riemann zerf31], is unclear for the
moment, though an appealing possibility was suggested in

Ref.[32].
primitive periodic orbits-prime numbersp, The functionR(7), here interpreted as the trace of the
classical evolution operator, is in fact a well-known function
period of the orbitsr,—Inp, (45  in number theory,
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di(x) duces a chaotic motignand are excluding disordered sys-
R(T:mX):W, tems.
In Sec. V we saw that for billiards on constant negative
curvature the low-lying spectrum consists of the ergodic zero
where ¢(X) ==,<xA(n) [A(n) is the Von-Mangoldt func-  at y,=0, and of an infinite number of zeros located on the
tion] [18]. By inverting Eq.(46), as in Sec. IV, and using Eq. ine Re(s) = h,,/2. This structure also follows for other sys-
(48), a formula for the density of the logarithm of the prime tems from semiclassical arguments. For a fully hyperbolic
numbers is obtained, given by E@8) with the appropriate pilliard, Gutzwiller's trace formula for the density of quan-
identifications and replacements dictated by Etp). The  tum eigenvalues takes the form
result coincides, up to a change of variable, with Riemann’s
formula. It can be integrated to obtain the counting function.
These results stress the strong similarities that exist between po() =2 8(t—t,)~po(t)
number theory and the theory of dynamical systems. “
The Ruelle function (4) coincides with the Riemanti

1
function [30], ZR(s)zl'Ip(l—p*S)*l:g(s). The approxi- +— 2 T—prcos(rt Tp).
mation (34) is therefore exact in this case, since E8p) is 7 o1 y|de(M,—1)|

[cf. Eq. (47)]. ) .
As in Sec. V A, 7, denotes here the length of the periodic

orbits p andt,, are the(eigen wave numberspq(p) is the
VI. CONCLUDING REMARKS Weyl term, and we have neglected Maslov indices. Fourier
inverting this formula with respect t§ and using the ap-

Two different explicit formulas for the densi of
wo o 7B icl u 1y(7) proximation (32), we obtain the following formula for the

periods of the primitive periodic orbits of fully chaotic clas- . !
sical systems have been obtained. Both provide a harmonfi€nsity of periods:
decomposition ofp(7), where the complex zeros and poles
(if any) of the corresponding function are related to the
elementary frequencies of the oscillatory terms, while the
real ones contribute to the smooth part. In one case{the
function is the spectral determinafs). It is assumed to be This is precisely the leading order density that is obtained
an entire function; its zeros, denoted are the eigenvalues from Eq. (28) assuming thaZ(s) has a simple zero at the
of the classical evolution operatgusually called Ruelle- origin and complex zeros concentrated on the critical line
Pollicott resonancesin the second formulation, the relevant Re(s)=h,J/2. Thus, the Hadamard-Gutzwiller model of
function is the Ruelle/ function Zg(s). In contrast to the Sec. V as well as the generalization E49) suggest that the
spectral determinant, this function has a meromorphic extergeneric low-lying spectrum of the classical evolution opera-
sion in the complex plane. The relation between both aptor of fully chaotic billiards consists of a simple zero at the
proaches was discussed in some detalil. origin plus an infinite sequendextending to arbitrary large
The zero ofZ(s) located at the origifor, alternatively, imaginary partsof complex symmetric zeros located on the
the pole of Zg(s) located ats=h,J provides the leading line Re()=h /2. A corresponding structure follows for
average growth of the density of periods of periodic orbits,Zg(s) by transforming zeros into poles locatedhgf,— vy.
p(r)~ehr’/ 77—, We found exponentially large sub- This first hypothesis about the location of the complex zeros
dominant corrections to the leading term that arise from thef Z(s) is reminiscent to that of Riemann in number theory.
same zerdor pole, and that are responsible for the main  For the negative curvature model and in the inverse for-
deviations observed numerically in billiards in a surface ofmula (49), the imaginary part of each Ruelle-Pollicott reso-
constant negative curvature. nance located on the line R®Ehy,/2 coincides with a
The zero ofZ(s) at the origin reflects a generic property quantum wave number. This happens because of important
of hyperbolic systems, the existence of an equilibrium distri-non genericities of those systems: the corresponding semi-
bution described by the microcanonical measure. What abowiassical trace formulé&he Selberg trace formylas exact,
the rest of the spectrum? No generic statements are knowand Maslov indices are zero. If in E(9) the Maslov indi-
aside the fact that Re =0, that resonances with arbitrarily ces are not neglecte@nd correction terms are taken into
large imaginary part should exist, and that complex resoaccount, the connection with the quantum wave numbers is
nances come in symmetric paifsf Sec. I\). There are, generically lost. The simplest effect of these phases would be
however, some hints on what could probably be the generito produce a shuffling of the resonances, without moving
structure, if any, of the low-lying spectrum &f(s) (e.g., them out of the line Re)=h,/2, and without changing
resonances with the smaller real pathat we would like to  their statistical properties. Some arguments in favor of this
discuss now. This low-lying part of the spectrum describeswill be given below. Concerning the distribution of the ei-
the long time dynamics of the system. For simplicity, from genvalues of the classical evolution operator, our second
now on we restrict the discussion to the case of billiards. Weguess is therefore that asymptoticaliye., for resonances
have in mind “generic” systems with a discrete spectrum oflocated far from the real axishe statistical properties of the
the classical evolution operat@xponential decgyWe also  imaginary part of the Ruelle-Pollicott resonances located on
restrict to ballistic systemé.e., billiards whose shape pro- the critical line Reg) = h/2 coincide with those of the cor-

ehtopT

2
p(7)~ +;ehtopf’22 cogt,7). (49
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responding quantum(eigen wave numbers, which are
random-matrix-like generically. This second hypothesis  Mn)== > u(m)|[de(My,—1)[> g,e” ™™
could be seen as an extension of the Bohigas-Giannoni- mn 7 (51)
Schmit conjecturd 33] to the statistical properties of the
spectrum of the classical evolution operator. This way, the
random matrix properties in fully chaotic systems wouldAs in Sec. IV, we have ignored the fluctuations of the factor
have a fully classical counterpart. |det(M ,— 1)| which may occur at short periods. An alterna-
In semiclassical theories, the quantum correlations can béve formula, equivalent to Eq(16), is obtained from
related to correlations acting among the actions of the perithe  corresponding  Ruelle ¢  function, ~ M(n)
odic orbits[2]. In scaling systems like billiards, the action =N~ *"Zmwnu(mM)=,g,e”"™, where they's are the poles and
coincides, up to a constant factor, with the perjodlength. ~ Zeros of Eq.(4) with the replacement mentioned above.
Therefore action correlations are equivalent to period correSince the timer=n changes by unit steps, the smallest scale
lations. Since, as we have here shown, the density of period®/€r Which temporal variations can occur is 1. It follows
of periodic orbits can be expressed in terms of the eigenval/om EQ. (50) that the complex resonances satisfym
ues of the classical evolution operator, it follows that the<!M(¥)<. Therefore, the natural variable to analyze dis-
correlations between periods of periodic orbits can be exSréte maps is nos, but ratherz=e*. By this transforma-
pressed in terms of correlations acting among the Ruellelion, the ergodic zerg,=0 is located az=1, and other real
Pollicott resonances. The quantum spectral correlations a@d complex Ruelle-Pollicott resonances with Ret 0 lie
thus mapped, via semiclassics, into classical spectral corrédside the unit diskz|<1.
lations. Through this connection, the RMT conjecture of the Substantial differences are expected between the structure
quantum fluctuations should have a classical counterparff the spectrum of(s) and Zg(s) for chaotic maps with
which applies to the fluctuation properties of the position inféSPect to that of chaotic continuous flows, and in particular
the complex plane of the Ruelle-Pollicott resonances. Thidvith respect to chaotic billiards. The main reason for that is
gives some support to our second hypothesis. the simplicity of the spectrum of penod_s of per|0d|f: orbits in
The two previous conjectures determine the gross featurd§€ case of maps. Since that spectrum is made of integers, the
of the low-lying spectrum of the evolution operator in fully Only nontrivial information carried by Eqg50) and (51)
chaotic billiards and, as a consequence, of the long time beékoncerns variations in the stability factors and number of
havior of the density and correlations of periodic orbits. TheCrbits of a given periode.g., average coarse-grained proper-
random-matrix universality observed in quantum systemdi€s. This is in contrast with continuous chaotic billiards,
may have, by semiclassical arguments, a classical countefthere a much more subtle and delicate information is en-
part. The “ergodic” zero located at the origin certainly plays coded in the spectrum of resonances, namely, the nontrivial
an important rolg12]. We are here suggesting a clear anddlst_rlbqun of the perlqu of the o_rblts. In maps, that distri-
explicit additional link between the statistical properties ofbution collapses to a simple and highly degenerate spectrum.
the classical and quantum spectrums, now involving the Ne simplicity of the average properties encoded in(&Q),
complex resonances. without fine-grained structure, implies a sn_npler spectrum of
To conclude, we br|ef|y discuss the spectrum of the evoresonance_s_. In _part_icular, no Concentratlpn of resonances
lution operator for discrete maps, and show that importanfVer & “critical” line is expected to occufthis would be a
qualitative differences with respect to smooth flows occurcfitical circle inside the unit disk in the variable, since its
We have in mind area-preserving classically chaotic mapgresence is associated with a harmonic decomposmon of the
acting on two-dimensional phase spaces, like, for exampledistribution of periods irR(7), whereasR(n) strictly tends
the kicked Harper or the kicked top. The time now takes onlyt0 & constant for long times. In hyperbolic maps, isolated
discrete values,r=n, n=1,2,3... (in some arbitrary resonances, without any special structure in the radial direc-

units), and the set of possible lengths of periods of periodicion, are therefore expected generically inside the unit circle.
orbits is trivial, just integers. The “return probability” or NO particular connection with random-matrix theory is there-

trace of the evolution operator is still expressed as a surfPré established concerning the statistical properties of the
over the periodic pointg4], resonances of chaotic maps. This picture seems to be con-
firmed by recent numerical simulatioh$4].
Semiclassically, the reason for the important differences
with respect to chaotic billiards is also clear. Random matrix
n :2 g,e ", requires correlations between actions of periodic orbits. In
Py scaling systems like billiards, the action of an orbit is pro-
(50)  portional to its lengthlor period. Therefore action correla-
tions translate into lengttor period correlations, which in
turn, through Eq(28), translate into resonance correlations.
wheren, is the (intege) period of the periodic orbip, and  In maps, the set of possible perio@shich is trivial) is not
the y’s are the Ruelle-Pollicott resonances. The latter are theelated to that of action&vhich is nontrivia). Therefore, the
zeros of Eq(21), making the replacement,—n,. Inverting  spectrum of the evolution operator, which is closely related
Eqg. (50 as in Sec. IV, a formula follows for the number of to the spectrum of periods of the periodic orbits, loses its
primitive periodic orbits of perioah, connection with random-matrix theory.

S

- n
R(n)=trL"= —P 5
(v % 21|de(|v|[,—1)| "
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