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Periodic orbit spectrum in terms of Ruelle-Pollicott resonances

P. Leboeuf
Laboratoire de Physique The´orique et Mode`les Statistiques, Universite´ de Paris XI, Baˆtiment 100, 91405 Orsay Cedex, France*
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Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g.,
a trajectory ‘‘p’’ returns to its initial conditions after some fixed timetp . Our aim is to investigate the spectrum
$t1 ,t2 , . . . % of periods of the periodic orbits. An explicit formula for the densityr(t)5(pd(t2tp) is
derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed
into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are
given by the imaginary part of the complex eigenvalues~Ruelle-Pollicott resonances!. For large periods,
corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative
formula for r(t) in terms of the zeros and poles of the Ruellez function is also discussed. The results are
illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical
properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also con-
sidered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution
operator of chaotic billiards.

DOI: 10.1103/PhysRevE.69.026204 PACS number~s!: 05.45.Mt, 03.65.Sq
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I. INTRODUCTION

In chaotic Hamiltonian systems, the unstable classical
riodic orbits form a set of measure zero among all the p
sible trajectories. However, as has been emphasized m
times, the periodic orbits are of great interest. In particu
they are very important in the study of the structure of
phase space dynamics and the transport properties of the
tion. Another relevant aspect of these orbits is their tempo
behavior. At a given energy, the periodstp of all the periodic
orbits p form a discrete set,$tp%5$t1 ,t2 , . . . ,t i , . . . %.
Many properties of this sequence are of interest in, e.g.,
derstanding the quantum mechanical behavior of chaotic
tems. For example, semiclassical theories establish a
between the statistical properties of the quantum eigenva
and those of the classical periods$tp%. One is led to answe
questions like how the number of periodic orbits grows w
increasing period, or what are the correlations~if any! be-
tween the periods of different orbits. In this respect, as
gards the first question, one of the main results in the fiel
the exponential growth of their number with increasing p
riod @1#. Concerning the second, there is no definite answ
but semiclassical arguments based on random-matrix th
~RMT!, suggest that there exist correlations between the
bits ~orbits with similar period repel each other! @2#.

Our purpose is to further explore the properties of
spectrum of the periods$tp% of the periodic orbits of fully
chaotic systems. We restrict the index ‘‘p’’ to the primitive
orbits only, i.e., repetitions of a given orbit are excluded. O
main result is an explicit formula that relates the density
periods of primitive orbits,

r~t!5(
p

d~t2tp!, ~1!
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to the eigenvalues of the classical evolution operator,
so-called Ruelle-Pollicott resonances. These resonan
which generically are defined by a set of complex numb
~denoted$g%), characterize the decay of correlations in t
time evolution of phase space densities@3#, and provide im-
portant information about the transport properties of the s
tem. For an introduction see Refs.@4,5#.

The set of periods$tp% can thus be explicitly related to
another, more fundamental, set, the Ruelle-Pollicott re
nances$g%. In this way, the properties of thetp’s can di-
rectly be related to the properties of theg ’s. The results
allow, in particular, to make a systematic analysis of t
structure of the spectrum of periods, focusing from the lar
towards the smaller scales.

Semiclassical theories in the manner of Gutzwiller
Balian-Bloch@6,7# describe the density of quantum states
terms of the periodic orbits of the corresponding classi
system. Here, in turn, we establish a connection between
density of periods of the periodic orbits and the Ruel
Pollicott resonances, i.e., the eigenvalues of the class
evolution operator. In this way, our results allow to establ
a link between the eigenvalues of the quantum and class
evolution operators that, hopefully, will be useful to mo
clearly elucidate their properties and correspondences.

Not much is known at present about the distribution in t
complex plane of the eigenvalues of the classical evolut
operator of chaotic Hamiltonian systems~see, e.g., Ref.@4#!.
Paraphrasing Ozorio de Almeida@8#, it is fair to say that,
though of great theoretical interest, the formula to be deriv
below merely relates our ignorance of the periodic or
spectrum to the even more mysterious maze of the eigen
ues of the classical evolution operator. However, there is
increasing effort to understand the properties and phys
interpretation of the latter, and their study is a central the
in several of the most interesting recent developments
classical chaotic systems, and of their quantum counterp
For instance, in quantum systems the Ruelle-Pollicott re
nances lurk behind many interesting effects. They prov
©2004 The American Physical Society04-1
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the most simple explanation of the long range nonunive
correlations observed in the quantum spectra of boun
Hamiltonian systems@9,10#, and show up in experiments tha
measure the transmission through open microwave cha
cavities @11#. The spectrum$g% is also a central issue in
recent field theoretic approaches whose aim is to dem
strate the validity of RMT in chaotic systems@12#, and ap-
pears in some mathematical models of quantum chaos
Riemann zeros@13#. More recently, several studies hav
clarified the correspondence between the quantum and
sical propagators for discrete maps in the presence of n
@14#.

The starting point of our study is an expression of t
trace of the evolution operator as a sum over the perio
orbits ~Sec. III!. An inversion of that formula, based on th
Möbius inversion technique, is implemented. Assuming t
the spectrum of the evolution operator consists of isola
resonances, the inversion leads to a general formula for
densityr(t) in terms of the eigenvalues$g% ~Sec. IV!. It is
also shown, in the same section, that a natural decompos
of the density emerges, where resonances located on the
axis determine the average or smooth behavior of the den
while oscillatory interferent terms arise from the compl
resonances. An alternative and mathematically more accu
formula forr(t), based on the Ruellez function ~instead of
the determinant of the evolution operator!, is first presented
in Sec. II. It serves as a reference for the calculations of S
IV, and complements the results obtained. Both approac
are compared in Sec. IV. Two illustrative examples a
worked out in Sec. V. The first one is the geodesic motion
a billiard of constant negative curvature. The spectrum of
evolution operator can be explicitly computed in this ca
This allows to write down a formula for the density of pe
ods of the periodic orbits, thus illustrating the general a
proach of Secs. II and IV. The results reproduce, in our f
malism, those of Ref.@15#. The second example is based
the Riemannz function. Though the dynamical basis for th
model is hypothetical, it is included here mainly to stress
existing analogies and similarities with known results in a
lytic number theory. Finally, Sec. VI contains some gene
remarks and conjectures concerning the spectrum of the
lution operator, inspired by the results of Sec. V and quan
chaos theory. Special emphasis is put in the connection
the statistical fluctuations of quantum eigenvalues a
random-matrix theory. We also show that important qual
tive differences exist between the spectrum of the class
evolution operator of smooth flows and that of discrete ma

II. THE DENSITY OF PERIODS OF PERIODIC ORBITS:
RUELLE z FUNCTION

In this section the aim is to derive an explicit formula f
the density of periods of the primitive periodic orbits, E
~1!. The density will be expressed in terms of the zeros a
poles, located in the complex plane, of a particular functi
the Ruellez function. To simplify, we will from now on
make reference to the zeros and poles of the Ruellez func-
tion as its ‘‘singularities.’’ The calculations presented in th
section serve as a basis for those of Sec. IV, where the
02620
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sity r(t) will be expressed in terms of the eigenvalues of t
evolution operator.

The starting point is the function

P~t!5(
p

(
r 51

`

tpd~t2r tp!. ~2!

The indexr accounts for the repetitions~or multiple travers-
als! of a given primitive periodic orbit ‘‘p. ’’ The function
P(t) is naturally associated with az function. To see this,
we reproduce a well-known derivation@4#, which consists in
including inside the double sum~2! a factor exp@b(t2rtp)#,
whose value is 1 because of thed function (b is a real
positive constant!. Then, expressing thed function asd(t
2r tp)5(2p)21*2`

` exp@ij(t2rtp)#dj, and making the
change of variablesj52 iv, P(t) takes the form

P~t!5
ebt

2p i (
p

(
r 51

`

tpe2brtpE
2 i`

i`

ev(t2r tp)dv.

For b positive and sufficiently large, the sums are conv
gent, and can therefore be interchanged with the integ
Doing that, and making the additional change of variab
s5v1b, we now get,

P~t!52
1

2p i Eb2 i`

b1 i`

dsest
]

]s (
p

(
r 51

`
e2srtp

r
.

Finally, using the expansion ln(12x)52(n51
` xn/n, we obtain

the relation

P~t!52
1

2p i Eb2 i`

b1 i`

dsest
]

]s
ln ZR~s!, ~3!

whereZR(s) is the topological or Ruellez function @16,17#,

ZR~s!5)
p

~12e2stp!21, ~4!

for Re(s) large.
Equation ~3! allows to make a connection between t

sum ~2! and the analytic properties ofZR(s). In order to
proceed we thus need some information about the latte
fact, for certain classes of hyperbolic systems, it can
shown thatZR(s) is analytic for Re(s).htop, wherehtop is
the topological entropy, and has a meromorphic extensio
the whole complex plane@17#. Restricting our analysis to
this case, from Eq.~3! an explicit and simple formula fol-
lows ~with b.htop, and closing the path of integration to
wards the left part of the complex plane!. It expressesP(t)
in terms of the location in the complex plane, denotedh, of
the singularities ofZR(s),

P~t!5(
h

gh eht. ~5!

In this equation the integergh is the multiplicity, and is posi-
tive for poles and negative for zeros. The indexh has a
4-2
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double significance: it serves as an index to enumerate
singularities, and also denotes their location in the comp
plane, ats5h.

Two alternative and distinct formulas forP(t) are thus
available, one as a sum over the periodic orbits, Eq.~2!, the
other as a sum over the singularities ofZR(s), Eq. ~5!. It is
convenient to rewrite Eq.~2! in terms of the density, using
the definition~1!,

P~t!5t(
r 51

`
1

r 2
r~t/r !. ~6!

From now on, the idea of the computation is the following.
we manage to invert equation~6!, and express the densit
r(t) in terms ofP(t), we are done, because Eq.~5! can then
be used forP(t), and the final output would be an expre
sion of r(t) in terms of the singularitiesh of the function
ZR(s).
l-

-

th
-

02620
he
x

Inversion problems have many important physical app
cations, but are in general difficult to solve. In our case,
inversion of Eq.~6! will be based on the Mo¨bius inversion
formula. This is a technique developed in the nineteenth c
tury, which has been extensively exploited in number the
@18#. More recently, it has found concrete applications
physics, such as, for example, for computing the phon
density of states from experimental measurements of the
cific heat of solids@19#.

The inversion proceeds as follows. Consider the sum

S15 (
m51

`
m~m!

m
P~t/m!, ~7!

wherem(m) is the Möbius function@18#. This is a number-
theoretic function, whose properties are based on the pr
decomposition of the integerm. It is defined as
m~m!5H 1 if m51

~21!k if m is a product ofk distinct primes

0 if m has one or more repeated prime factors
of
n-

n
n

the
one

l

nd
real

e

@and thus m(m)51,21,21,0,21,11, . . . for m
51,2,3,4,5,6, . . . , aquite erratic function#. If, in Eq. ~7!, we
use forP the series defined by the right-hand side~rhs! of
Eq. ~6!, we obtain

S15t (
m,r 51

`
m~m!r~t/rm!

~rm!2
5t (

n51

`

(
m/n

m~m!r~t/n!

n2

5tr~t!,

where the sum(m/n runs over the divisorsm of n. The last
equality is the key point of the inversion technique. It fo
lows from a remarkable property of the Mo¨bius function,
namely,(m/nm(m)5dn,1 . Finally, combining the last equa
tion with Eq. ~7!, we obtain an equation for the density,

r~t!5
1

t (
m51

mc m~m!

m
P~t/m!5

1

t (
m51

mc m~m!

m (
h

gh eht/m.

~8!

The sum overm has been truncated at a value equal to
integer part oft/tmin , wheretmin is the period of the short
est periodic orbit of the system,

mc5@t/tmin#.

This truncation is a consequence of the fact thatP(t)50 for
t,tmin @cf Eq. ~2!#, and thereforeP(t/m)50 for m.mc in
Eq. ~8!.
e

Equation~8! is our first result. It expresses the density
periods of the primitive periodic orbits in terms of the si
gularities of the Ruellez function.

The right-hand side of Eq.~8! should, in principle, repro-
duce a series ofd peaks located, according to the definitio
of r(t), at the periods of the primitive periodic orbits. I
order to better display the structure of Eq.~8!, and see the
correspondence with the series ofd peaks, it is useful to
consider a decomposition of the density in two parts,

r~t!5 r̄~t!1 r̃~t!. ~9!

This decomposition is associated with a classification of
resonances into two distinct sets, each set contributing to
of the two terms in the rhs of Eq.~9!. BecauseP(t) is a real
function, the Ruellez function satisfies a simple functiona
equation@which follows from Eq.~3!#,

@ZR~s!#* 5ZR~s* !

~the star denotes complex conjugate!. A singularity h of
ZR(s) is therefore either simple and real, or complex a
comes in conjugate pairs symmetric with respect to the
axis. This property is at the origin of the decomposition~9!,
with the real singularities contributing tor̄(t), and the com-
plex ones tor̃(t). If the location of the resonances in th
complex plane is written as

h5qh6 i t h ,
4-3
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with qh real andth real positive, then the two contribution
to the density can be expressed as

r̄~t!5
1

t (
m51

mc m~m!

m (
hPR

gh eqht/m ~10!

and

r̃~t!5
2

t (
m51

mc m~m!

m (
h,th.0

gh eqht/mcos~ tht/m!, ~11!

where in Eq.~10! the sum is made over the real singulariti
of ZR(s), whereas in Eq.~11! it is made over the complex
ones located in the upper half part of the complex plane

The first contribution,r̄(t), is given by a sum of rea
exponential terms. It has therefore a smooth dependenc
t, and describes the average properties of the density. I
produces the behavior of the singular sum~1! when r~t! is
smoothed on a scale which is large compared to the ave
spacing betweend peaks. To reproduce the average part
the density of periods we thus need to know the location
the real singularities. It is known, in particular, that in hype
bolic systems its rightmost real singularity, which contro
the asymptotic growth whent→`, is a simple pole ats
5htop @1#,

h05q05htop, gh0
51. ~12!

The presence of this pole implies, keeping the termm51 in
Eq. ~10!,

r̄0~t!5
ehtopt

t
, t→`. ~13!

We thus recover, to leading order, the well-known expon
tial growth of periodic orbits in chaotic systems, with th
typical rate given by the inverse of the topological entro
@1#. However, the inversion procedure employed here allo
to go beyond that result, and obtain subdominant correct
to the average growth of the density. It is remarkable, inde
that the contribution of the pole ats5htop gives also, from
Eq. ~10!, a series of exponentially large corrections to t
asymptotic behavior, with signs depending on the Mo¨bius
function,

r̄0~t!5
1

t (
m51

mc m~m!

m
ehtopt/m5

ehtopt

t
2

ehtopt/2

2t
2

ehtopt/3

3t

2•••. ~14!

The first corrections lower the density, while the first positi
one occurs form56.

Besides the pole athtop, other real singularities ofZR(s),
with real partqh,htop, add further subleading corrections
the density of periods. Those located in the negative par
the real axis contribute with exponentially small correctio
We are not aware of any generic result about the locatio
02620
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the complex plane of the additional real singularities, a
how their contributions compare to the corrections that co
from h0.

The remaining contribution to the density,r̃(t), behaves
quite differently. This term is responsible for the discre
nature of the spectrum of periods of the periodic orbits.
top of the average behaviorr̄, each complex singularity o
ZR(s) adds an oscillatory term to the density of periods. It
the interference of the oscillatory contributions of all th
complex singularities that, formally, reproduces thed-peak
structure of Eq.~1!.

The amplitude of each oscillatory term is given by t
exponential of the real partqh of the singularity. In contrast
the inverse of the imaginary part, 2pmth

21 , is the period of
the oscillation. Singularities with the smaller imaginary pa
describe long range fluctuations with respect to the smo
behavior of the density, on scales which may be much lar
than the typical time that separates two neighboring or
~terms withm.1 are of longer range, but their weight is o
lower order in the limitt→`!. As singularities with increas-
ing imaginary part are included, details ofr~t! on smaller
scales are resolved. For instance, to distinguish individ
peaks ofr~t! located aroundt requires complex singularitie
with imaginary part of the order of the average density
periods,th;ehtopt/t.

Equation ~8! provides therefore a harmonic decompo
tion of the density of periods, where the frequency of ea
sinusoidal wave is given by a fraction of the imaginary p
of a complex singularity. Since arbitrary high frequencies
needed to reproduce ad peak, Eq.~8! also implies that, ge-
nerically, singularities with arbitrarily large imaginary pa
should exist. But we have no additional information abo
their distribution in the complex plane.

Equation~8! can be integrated with respect tot to obtain
a harmonic formula for the cumulative distribution, or coun
ing function of the periods. This function is defined as t
number of primitive periodic orbits whose period is smal
thant,

N~t!5E
0

t

r~x!dx5(
p

Q~t2tp!, ~15!

whereQ is Heaviside’s step function. The result of the int
gration is,

N~t!5 (
m51

mc m~m!

m (
h

gh EiS ht

m D , ~16!

where Ei is the exponential integral function. Similarly
Eq. ~8!, this expression is, formally, exact. The same deco
position and general remarks as for the density apply to
function.

III. THE TRACE OF THE EVOLUTION OPERATOR

In the preceding section, we described the periodic o
density and the counting function in terms of the singularit
of the Ruellez function. In this and the following section w
4-4
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will introduce an alternative description of the density, bas
on the eigenvalues of the classical evolution operator.
motivations for doing this are the following. On the on
hand, an explicit relation between the periodic orbits and
eigenvalues of the evolution operator is of clear theoret
interest. It helps in understanding the properties of both s
as well as their correspondences. On the other hand, the
nection is a central issue in the study of the quantum
classical behavior of chaotic systems and allows, via se
classical techniques, to relate the quantum and class
eigenvalues.

Before presenting in Sec. IV the derivation of the altern
tive description of the density of periods, we need to pre
ously introduce some definitions and basic equations rel
to the classical evolution operator.

Consider a classical system whose dynamical state is
fined by the phase-space coordinatex. After a time t, the
point x evolves into a new statey5 f t(x). The kernel of the
evolution operator of the deterministic motion is defined b
Dirac distribution,

Lt~y,x!5d„y2 f t~x!…. ~17!

We shall assume throughout the paper thatf t(x) describes
the conservative smooth flow of a closed Hamiltonian s
tem. Open systems are not treated here, but may be co
ered as well within the same formalism@4#.

The trace of the evolution operator is defined as

R~t!5E dxLt~x,x!, ~18!

where x is integrated over the phase space. The funct
Lt(x,x) is the conditional probability density for the syste
to be at the pointx by the timet if the initial state was at the
same point.R(t) is therefore proportional to the classic
return probability at timet. A trajectory starting atx and
coming back to the same point after a timet defines a closed
loop in phase space. Any phase-space closed loop defin
cyclic motion, because the system returns to its initial c
ditions. For a fully chaotic dynamics, an explicit expressi
of R(t) in terms of the periodic orbits of the system w
obtained in Ref.@20#,

R~t!5(
p

(
r 51

`
tp

udet~M p
r 21!u

d~t2r tp!. ~19!

The sum is made over the primitive periodic orbitsp and
over their repetitionsr. Each orbit has a periodtp and a
monodromy matrixM p . The latter describes the stability o
the orbit. The factorudet(M p

r 21)u21 is related to the overlap
between an initial cloud, centered initially around the orbitp,
and its iterate, after a timet5r tp , in a linear approximation
The functionR(t) has a peak at the period of each primiti
periodic orbit, or at one of its repetitions, with a weig
inversely proportional to its stability.

Notice that Eq.~19! is similar to Eq.~2!, with the impor-
tant difference of the stability factor in the denominator
the former. In spite of this difference, similar steps as th
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that led in the preceding section from Eq.~2! to Eq. ~3! can
be followed forR(t). They lead to a connection between th
trace of the evolution operator and az function. We will not
repeat them here, but only mention that, for reasons to
understood below, the sign in the change of variables
tweenj andv is the opposite here. The result, analogous
Eq. ~3!, is

R~t!52
1

2p i Ea2 i`

a1 i`

dse2st
]

]s
ln Z~s!, ~20!

wherea is a real constant,0. The functionZ(s) is called the
spectral determinant, or Smalez function, and is defined as
@4,16#

Z~s!5expF2(
p,r

esrtp

r udet~M p
r 21!uG . ~21!

The complex variables has units of inverse of time. Equatio
~20! relates the trace of the evolution operator to the anal
structure of the functionZ(s). Under some general cond
tions valid for a certain class of hyperbolic systems@and
analogous to those assumed in the preceding section
ZR(s)], the Smalez function is generically an entire functio
@21,22# ~i.e., analytic at all finite points in the comple
plane!. More complicated analytic structures ofZ(s) may
arise, like, for example, branch cuts that lead to power l
decays in intermittent systems@9#. We will ignore here these
other possibilities. Assuming, therefore, thatZ(s) is entire,
from Eq. ~20! the trace of the evolution operator can b
expressed as@20#

R~t!5(
g

gg e2gt, ~22!

where theg ’s are the zeros ofZ(s). The complex set of
points$g% define the~complex and discrete! spectrum of the
evolution operator. In this equation, and in the rest of
paper, the indexg has a double significance: it serves as
index to enumerate the zeros, and also denotes their loca
in the complex plane, ats5g.

The spectrum$g%, given by the zeros of the entire func
tion Z(s), characterizes the relaxation towards equilibriu
of classical statistical ensembles@3#. The complex zeros are
usually called Perron-Frobenius or Ruelle-Pollicott res
nances. We shall, however, often refer to thewhole set of
zeros~real and complex! as resonances.

The positive indexgg in Eq. ~22! is the multiplicity of the
resonance. The physically relevant modes being deca
ones, the corresponding resonances lie in the positive
plane Re(g)>0 @this justifies the choice of sign in the der
vation of Eq.~20!#. It is, in general, a difficult problem to
determine analytically the spectrumg for a particular sys-
tem. However, in Hamiltonian systems, where the energ
conserved, there exists a well defined long time equilibri
state, given by the invariant measure on the energy shell w
the microcanonical weight. The existence of this equilibriu
state is manifested in the analytic properties ofZ(s) by the
presence of a simple ‘‘ergodic’’ zero@5#, located at
4-5



th
-

em
th

ss

e
-

er
oi
ity

at

si
u
s
e-

in

ls
n
,
m
-

ity

e

c-

ty

e

is

e
To

olu-

e
r-

ty

fi-
.

a-

rts,
tor

P. LEBOEUF PHYSICAL REVIEW E 69, 026204 ~2004!
g050, gg0
51. ~23!

The ergodic zero, located at the origin, corresponds to
unique invariant measure~in the sense of statistical en
sembles! in fully chaotic systems. From Eq.~22! it follows
that this very general property implies that limt→`R(t)
→1, which expresses the equiprobability to find the syst
in any phase space point. This fixes the normalization of
trace of the evolution operator, or ‘‘return probability’’~the
volume is set to 1!. Other resonances, with Re(g).0, are
associated with decaying modes that describe the proce
relaxation of an initial cloud towards equilibrium.

IV. THE DENSITY OF PERIODS OF PERIODIC ORBITS:
RUELLE-POLLICOTT RESONANCES

The two expressions of the trace introduced in the prec
ing section, Eqs.~19! and ~22!, relate a sum over the eigen
values of the evolution operator to a sum over all the p
odic orbits of the system. Similarly to Sec. II, we can expl
this connection to derive an explicit formula for the dens
of periods of primitive periodic orbits,r(t), but now ex-
pressed in terms of the eigenvalues of the evolution oper
~instead of the singularities of the Ruellez function!. This
formula will take again the form of a harmonic decompo
tion, i.e., the density will be expressed as an interferent s
over oscillatory terms. The frequency of oscillation of the
terms will be given by the imaginary part of the Ruell
Pollicott resonances.

To computer(t), now the starting point is Eq.~19!. To
expressR(t) in terms of the density of periods, the ma
obstacles are the stability factors,udet(M p

r 21)u. These are
not only functions of the period of the orbits, but depend a
on their stability. However, in fully hyperbolic Hamiltonia
systems, where periodic orbits are dense in phase space
stability or Lyapounov exponents of long orbits are the sa
for almost all orbits@23#. Therefore, for long orbits the sta
bility factor becomes only a function of the period,

udet~M p
r 21!u5udet~M tp

r 21!u, t→` ~24!

Within this approximation, and using the definition~1! of the
density, the functionR(t) may be rewritten as

R~t!5t(
r 51

`
1

r 2udet~M t/r
r 21!u

r~t/r !.

The factorudet(M t
r 21)u is in fact a function of the variable

r t ~cf. for instance, Ref.@4#!, and thereforeudet(M t/r
r 21)u

5udet(M t21)u depends only on the period. The dens
then takes the form

R~t!5
t

udet~M t21!u (
r 51

`
1

r 2
r~t/r !. ~25!

From now on, the situation is similar to that of Sec. II. W
should invert Eq.~25!, and express the densityr(t) in terms
of R(t). Then, using Eq.~22! for R(t), we will get an
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expression ofr(t) in terms of the eigenvaluesg. It is con-
venient, to simplify the computation, to define a new fun
tion

G~t!5
udet~M t21!u

t
R~t!5(

r 51

`
1

r 2
r~t/r !. ~26!

Then, consider the sum

S25 (
m51

`

m~m!G~t/m!/m2,

where we again make use of the Mo¨bius functionm(m). The
sumS2 is evaluated in two different ways. First, using forG
the series expansion in the rhs of Eq.~26!. This gives

S25 (
m,r 51

`
m~m!r~t/rm!

~rm!2
5 (

n51

`

(
m/n

m~m!r~t/n!

n2
5r~t!,

where the sum(m/n is made over the divisorsm of n. The
last equality follows, as in Sec. II, from the proper
(m/nm(m)5dn,1 . The second way to evaluateS2 is using for
G the first equality in Eq.~26!. Combining both, we obtain,

r~t!5
1

t (
m51

mc m~m!

m
udet~M t/m21!uR~t/m!. ~27!

As in Sec. II, the sum overm has been truncated at a valu
equal to the integer part oft/tmin , wheretmin is the period
of the shortest periodic orbit of the system. This truncation
a consequence of the fact thatR(t)50 for t,tmin @cf. Eq.
~19!#, and thereforeR(t/m)50 for m.mc in Eq. ~27!.

Equation ~27! gives an explicit connection between th
density of periods and the trace of the evolution operator.
express the density in terms of the eigenvalues of the ev
tion operator, we simply use Eq.~22!. This gives

r~t!5
1

t (
m51

mc m~m!

m
udet~M t/m21!u(

g
gg e2gt/m.

~28!

Equation~28! is our main result. It provides an alternativ
formula for the density of periods of primitive periodic o
bits. The structure of Eq.~28! is very similar to that of Eq.
~8!, with two important differences: it includes the stabili
factors, and the sum is made now over the eigenvalues$g%
of the classical evolution operator@given by the zeros of
Z(s)], instead of the singularities ofZR(s).

The right-hand side of Eq.~28! should, in principle, also
reproduce a series ofd peaks located, according to the de
nition of r(t), at the periods of the primitive periodic orbits
Since the Smalez function also satisfies the functional equ
tion

@Z~s!#* 5Z~s* !,

the density can be, as in Sec. II, decomposed into two pa
r5 r̄1 r̃, where real eigenvalues of the evolution opera
4-6
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contribute tor̄, and complex symmetric ones tor̃. If the
location of the resonances in the complex plane is written

g5qg6 i t g ,

with qg and tg real positive~or zero!, then the smooth and
oscillatory contributions to the density can be express as

r̄~t!5
1

t (
m51

mc m~m!

m
udet~M t/m21!u (

gPR1
gg e2qgt/m,

~29!

and

r̃~t!5
2

t (
m51

mc m~m!

m
udet~M t/m21!u

3 (
gPC1

gg e2qgt/mcos~ tgt/m!, ~30!

respectively@R1 denotes the positive real axis~including the
origin!, andC1 the upper right sector of the complex plane#.

How these results compare to Eqs.~10! and ~11!? Let us
start the comparison with the average part. In the limit
→`, the leading order contribution to Eq.~29! is given by
the real zero with the smallest real part. That zero is kno
it is the ergodic zero denotedg0 in the preceding section
whose location at the origin is the only generic prope
known about the spectrum of eigenvalues of the evolut
operator in hyperbolic systems. Keeping only the termqg
50 andm51 in Eq. ~29!, we obtain

r̄~t!5
udet~M t21!u

t
, t→`. ~31!

Thus, in the limitt→`, the leading order behavior of th
average density of periods is proportional to the stabi
factor of the orbits. When compared to the leading or
obtained in Sec. II from the leading pole of the Ruellez
function, Eq.~13!, this result implies

udet~M t21!u5ehtopt, t→`. ~32!

This correspondence is equivalent to the Hannay–Ozorio
Almeida sum rule, derived in Refs.@23,24# from a unifor-
mity principle. It expresses the counterbalance between
exponential proliferation of the periodic orbits and t
growth of their~positive! instability. It is also a consequenc
of Pesin’s equality, which relates the topological entropy
the sum of the positive Lyapounov exponents@25#. Here it
has an analytic significance, it expresses the correspond
between the pole athtop of the Ruellez function and the
ergodic zero at the origin of the Smalez function.

The higher order termsm.1 obtained from the ergodic
zero in Eq.~29! give for the average density a contributio
equivalent to Eq.~14!. Besides the ergodic zero, other re
resonances (qg.0,tg50) of Z(s) add further subleading
corrections to the density of periods. However, no gene
result concerning their location is known.
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The remaining contribution to the density,r̃(t), gives the
oscillatory terms. In this approach, based on the eigenva
of the evolution operator, the amplitude of each oscillato
term is determined by a competition between the exponen
growth of the stability factorudet(M t/m21)u and the expo-
nential decay ofe2qgt/m. Using the asymptotic approxima
tion ~32! for the determinant, general arguments indicate t
the complex resonances with the smaller real part should
located on the strip 0,qg,htop, and therefore that the lead
ing oscillatory contributions have individual amplitudes th
grow exponentially in time@26#. The inverse of the complex
part, 2pmtg

21 , is the period of the oscillation. Resonanc
with the smaller imaginary part describe long range fluct
tions on top of the smooth behavior of the density, on sca
that can be, depending on the value oftg , much larger than
the typical time that separates two neighboring orbits~terms
with m.1 are of longer range, but their weight is of lowe
order in the limit t→`). As resonances with increasin
imaginary part are included, details ofr(t) on smaller scales
are resolved. For instance, to distinguish individual peaks
the density located around a periodt requires complex reso
nances with imaginary part of the order of the average d
sity of periods,tg;ehtopt/t.

Equation~28! therefore provides an alternative harmon
decomposition of the density, where the frequency of e
sinusoidal wave depends on the imaginary part of the p
tion in the complex plane of the eigenvalues of the evolut
operator~Ruelle-Pollicott resonances!. Since arbitrary high
frequencies are needed to reproduce ad peak, Eq.~28! im-
plies that, generically, resonances with arbitrarily lar
imaginary part should exist~similarly to the Ruellez func-
tion!.

Equation~28! can be integrated with respect tot to obtain
an alternative formula for the cumulative distribution,
counting function of the periods, Eq.~15!. To compute the
integral, an explicit form of the determinant is needed, wh
depends on the dimensionality of the system. However,
ymptotically the approximate expression~32! can be used.
This yields

N~t!' (
m51

mc m~m!

m (
g

gg EiS ~htop2g!
t

mD , ~33!

which has to be compared to Eq.~16!. The same decompo
sition and general remarks as for the density apply for t
function. The main contributions to the smooth part are o
tained from the ergodic zero,g50, and oscillatory terms are
given by the complex resonances.

We have therefore obtained two alternative and disti
descriptions of the density of periods of the periodic orb
From a mathematical point of view, Eq.~8! is preferable to
Eq. ~28!, because in the derivation of the latter we ha
ignored some possible fluctuations of the stability fact
that may occur at short times. However, from a physi
point of view the latter description is clearly more intere
ing, since the Ruelle-Pollicott resonances, or eigenvalue
the classical evolution operator, have a clear and intrin
physical content, directly related to the classical dynam
4-7
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In practice, it is interesting to exploit both approaches. T
leads to consider in more detail the relationships betw
them.

As we have shown, the ergodic zero ofZ(s) and the pole
of ZR(s) at htop carry similar~though not exactly equivalent!
information. The pole athtop leads to the smooth contributio
~14!, whereas the ergodic zero generates a series whic
identical but withehtopt/m replaced byudet(M t/m21)u. It is
only in the asymptotic approximation~32! of the stability
factor that their contributions coincide. It is interesting
explore the correspondence between the analytic structu
both functions in the latter approximation. The simplest p
cedure is to make, in Eq.~21!, the replacementudet(M p

r

21)u'ehtopr tp. This approximate Smalez function takes the
form

Z~s!'expF2(
p,r

e(s2htop)r tp

r G
5)

p
@12e(s2htop)tp#

5ZR
21~htop2s!, ~34!

where we have used the expansion ln(12x)52(n51
` xn/n to

compute the sum over the repetitions. In this approximat
the poles/zerosh of ZR(s) are mapped into zeros/polesg of
Z(s), located atg5htop2h. This correspondence is ex
pected to hold for long times, where the approximation of
stability factor made before is valid. Using the location of t
singularities ofZR(s), the mapping~34! should therefore
accurately describe the location in the complex plane of
zeros ofZ(s) that are responsible for the asymptotic beha
ior of the density. Those are the zeros whose real par
small. It maps, in particular, the pole ofZR(s) at htop into the
ergodic zero ofZ(s) at the origin. In contrast, resonanc
with real part far away from the origin need not be in cor
spondence. Moreover, the approximation~34! produces a
function Z(s) which is meromorphic, rather than entire,
assumed before. Globally, the mapping~34! is clearly false.

V. ILLUSTRATIVE EXAMPLES

The aim now is to find systems where the analytic str
ture of Z(s) and ZR(s) can be computed, thus allowing t
write down explicitly the formula for the density of period
of the periodic orbits, and to compare and illustrate b
approaches. Another interest of such a study is to gain s
insight into the distribution of the resonances and singul
ties in the complex plane in concrete examples. The exp
computation of the analytic structure of thez functions is a
quite difficult task in general. However, it is doable in som
cases. Two examples are treated in detail. The first one is
geodesic motion on a two-dimensional manifold of const
negative curvature. The second, a mathematical mode
based on Riemann’sz function. Both have their own pecu
liarities: the somewhat unphysical character of the motion
the first, the purely speculative dynamical interpretation
the second. In spite of them, they both provide a conc
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illustration of the general results obtained previously. T
geodesic motion on a space of negative curvature has
served as a paradigm of classical and quantum chaotic
tion @6,27#.

A. Geodesic flow on surfaces of constant negative curvature

We are interested in the geodesic motion on a tw
dimensional hyperbolic geometry. In particular, we consid
billiards on surfaces of constant negative curvature, the
called Hadamard-Gutzwiller model. We will not enter into
detailed description of the classical and quantum motion
such surfaces, and refer the reader to the excellent intro
tory papers@27#. For these models Gutzwiller’s trace formu
is exact@28#. This allows to express the periodic orbit leng
spectrum in terms of the quantum eigenvalues@15#. We will
here rederived the formula for the length spectrum as
illustration of the general formalism based on the eigenv
ues of the evolution operator and singularities of the Ruellz
function.

Consider a compact and closed surface of areaA on the
two-dimensional Poincare´ disk, constructed from a suitabl
bounded domain on which appropriate~periodic! boundary
conditions have been defined. The corresponding class
geodesic motion includes a setp of primitive periodic orbits
~closed geodesics on the compact surface!. To start with,
consider the corresponding Selbergz function @29#,

ZS~s!5)
p

)
n50

`

~12e2(s1n),p!. ~35!

The first product is defined over the primitive periodic orb
p of length,p ~in appropriate units!. This function differs in
its definition from the Smale and Ruellez functions.ZS(s) is
an entire function, with zeros located at@29# ~a! s51, g
51; ~b! s51/26 ipa , g5ga ; ~c! s50, g5A/(2p)11;
~d! s52k, k51,2, . . . , g5(k11)A/(2p); where pa

5AEa21/4, a51,2, . . . . TheEa are the~quantum! eigen-
values of the Laplace-Beltrami operator on the surface,
the pa are the corresponding wave numbers. The integeg
denotes the multiplicity of the zeros. In case~b! they depend
on the degeneracyga>1 of the eigenvalueEa . Because of
topological constraints,A/(4p) is a positive integer.

The topological or Ruellez function ~4! is easily obtained
from ZS(s). It is given by@29#

ZR~s!5)
p

~12e2s,p!215
ZS~s11!

ZS~s!
. ~36!

The analytic structure of this meromorphic function direc
follows from that ofZS(s) ~see the left part of Fig. 1!: ~a!
pole ats51; gh51; ~b! poles ats51/26 ipa , gh5ga ; ~c!
pole ats50, gh5A/(2p); ~d! zeros ats521/26 ipa , gh
52ga ; ~e! pole ats521, gh5A/(2p)21; ~f! poles ats
52k, k52,3, . . . ,gh5A/(2p).

The rightmost pole of this function is real and located
s51. This implies thathtop51 in these systems. This pole
responsible for the leading asymptotic average growth of
number of orbits, and provides subleading corrections
4-8
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well. There is an infinite number of other real poles w
qh,htop, which also provide subleading corrections to t
average part. The complex zeros and poles, aligned her
two different vertical lines in the complex plane, contribu
to the oscillatory part. There exist poles and zeros with a
trarily large imaginary part, as generically required~cf. Sec.
II !.

Taking into account separately the contributions of
real and complex singularities ofZR(s), from Eq. ~8! a for-
mula is obtained for the length spectrum of the periodic
bits on a compact and closed hyperbolic surface~with the
speed set to 1,t stands here for the length, of the orbits!,

r~t!5 r̄~t!1 r̃~t!, t is the length of orbits ~37!

with

r̄~t!5
1

t (
m51

mc m~m!

m
et/mF12e22t/m1

A
2p

e2t/m

~12e2t/m!
G
~38!

and

r̃~t!5
4

t (
m51

mc m~m!

m
sinh~t/2m!(

a
gacos~pat/m!.

~39!

Concerning the complex singularities, as mentioned
fore ZR(s) has two ‘‘critical’’ lines, one made of complex
zeros@located at Re(s)521/2], the other of complex pole
@located at Re(s)51/2]. Their superposition produces the o
cillatory part r̃(t). It is remarkable that the frequencies
the harmonic decomposition of the periodic orbit density
directly related to the quantum wave numbers, a con
quence of the fact that Selberg’s trace formula is exact.
will come back to this point later on. The integrated versi
of Eq. ~37! for the counting function,N(t), was computed
and analyzed in Ref.@15#. For a specific hyperbolic billiard
we have numerically checked that the deviations with resp
to the leading order behaviorN̄(t)'Ei(t) observed in the
data were well explained by the subleading correctionsm
.1 of the poleh5htop51 in Eq. ~16!.

FIG. 1. Analytic structure close to the origin of the Ruelle ze
function ~left! and of the spectral determinant~Ruelle-Pollicott
resonances, right! for a compact and closed billiard on a surface
constant negative curvature. Crosses are poles, circles are z
Multiplicities and exact positions are given in the text.
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Notice that each of the terms in the series~38! diverges in
the limit t→0. This divergence is due to the splitting of th
density into two parts,r̄ and r̃, whereas the sum of the tw
terms is well behaved.

Consider now the spectral determinant or Smalez func-
tion ~21!, whose zeros are the eigenvalues of the evolut
operator. Another peculiar feature of the Hadama
Gutzwiller model is that all the periodic orbits have the sa
Lyapounov exponent~equal to 1!. M p can be written as a
232 diagonal matrix whose diagonal elements aree6,p.
Therefore,

udet~M p
r 21!u52@cosh~r ,p!21#. ~40!

Expanding the inverse of the determinant asudet(M p
r

21)u215(k51
` ke2rk,p, and computing the sum over th

repetitionsr, from Eqs.~21! and ~40! we obtain

Z~s!5)
p

)
k51

`

@12e2(k2s),p#k. ~41!

Using the definition of the Ruelle and Selbergz functions,
Eq. ~41! can be reexpressed as

Z~s!5)
k51

`

ZR
2k~k2s!5)

k51

` ZS
k~k2s!

ZS
k~k112s!

. ~42!

Further manipulations of the latter equation lead finally to

Z~s!5)
k51

`

ZS~k2s!. ~43!

SinceZS(s) is entire, it follows from the last expression th
Z(s) is also an entire function. The analytic structure ofZ(s)
follows from that ofZS(s), with zeros at~cf. the right part
of Fig. 1! ~a! s50, gg51; ~b! s5k11/26 ipa , k
50,1,2, . . . , gg5 ga ; ~c! s5k, k51,2, . . . , gg5k(k
11)A/(4p)12.

This distribution of zeros satisfies the ‘‘generic’’ requir
ments concerning the spectrum of the classical evolution
erator of a hyperbolic system:~i! all zeros have Re(g)>0,
~ii ! there is a simple pole at the origin~ergodic zero!, and
~iii ! there are complex symmetric zeros with arbitrarily lar
imaginary part. Using Eq.~40!, the density~28! is now ex-
pressed in terms of the classical resonances as

r~t!5
1

t (
m51

mc m~m!

m
et/m~12e2t/m!2(

g
gg e2gt/m.

~44!

Using the locations and corresponding multiplicities of t
zeros ofZ(s) given above, and separating the contributio
of the real and complex zeros, it is easy to check that
~44! is strictly equivalent to Eqs.~38! and~39!. For the geo-
desic flow on a constant negative curvature, the exact den
is thus recovered from Eq.~28!, without any error. The rea
son for this is that in the present model the Lyapounov

ros.
4-9
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ponents are constant, independent of the orbit. It follows
Eq. ~24! is exact for any period, not only asymptotically@cf.
Eq. ~40!#.

It is, however, interesting to remark that the two expr
sions for the density are obtained from functions with ve
different analytic structure. In particular,ZR(s) is meromor-
phic and has two ‘‘critical’’ lines, one made of an infinit
number of zeros located at Re(s)521/2, the other of an
infinite number of poles located at Re(s)51/2. In contrast,
the spectral determinant is entire and, as complex zeros
an infinite number of parallel replicas of the quantum sp
trum located at Re(s)5k11/2, k50,1,2, . . . . Thecorrect
result ~39! for the oscillatory part of the density is only re
covered when the whole set of complex resonances ofZ(s)
is taken into account. In contrast, the leading ord
asymptotic behaviort→` of the density is controlled by the
zero at the origin and the complex resonances locate
Re(s)51/2.

The Hadamard-Gutzwiller model offers also the oppor
nity to analyze the accuracy of the approximation~34! of the
Smalez function, which holds asymptotically. It is obtaine
by keeping only the first termk51 in Eq. ~42!. In that ap-
proximation, the analytic structure ofZ(s) consists now of a
simple zero at the origin, complex zeros on the line Res)
51/2, complex poles on the line Re(s)53/2, and zeros a
s5k,k51,2, . . . . Theanalytic structure is thus well repro
duced for Re (s),1 @the zero at the origin and the lowe
line of complex zeros located at Re (s)51/2]. The remaining
structure is wrong~the degeneracy of the remaining real z
ros is wrong, at Re(s)53/2 it has a line of complex pole
instead of zeros, the other lines of complex zeros are m
ing!.

B. The Riemann zeta function

Our second example is taken from analytic numb
theory, which has inspired several developments in
theory of dynamical systems@30#. The results we are going
to present are based on a dynamical interpretation of
Riemann zeros and of the prime numbers. This interpreta
is by no means necessary, but it is a useful one becau
introduces the appropriate physical framework into the d
cussion, and therefore facilitates the comparison with
namical systems. We therefore revisit here some well-kno
formulas in number theory, viewed from the perspective
the present theory that connects the periodic orbits to
eigenvalues of the evolution operator.

The spectral interpretation of the Riemann zeros is ba
on the following identification. The imaginary part of each
the Riemann zeros is thought to be an eigenvalue of a q
tum system with a classically chaotic limit with no time
reversal symmetry. An analysis, based on a semiclassica
terpretation of a formula for the density of the critical zer
@31#, shows that the set of prime numbers has to be identi
to the set of periodic orbits of the~unknown! classical dy-
namics. The analysis leads to the following mapping,

primitive periodic orbits→prime numbersp,

period of the orbitstp→ ln p, ~45!
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stability udet~M p
r 21!u→pr5er ln p.

The last correspondence implies thathtop51 in this hypo-
thetical dynamical system, which for simplicity we refer
as the Riemann dynamics.

We do not know the classical Hamiltonian behind the R
mann dynamics, but the information contained in Eq.~45!
concerning the periodic orbits is enough to write down t
trace of the corresponding classical evolution operator,
~19!. Using in the latter the correspondences~45!, the trace is
expressed as

R~t!5(
p

(
r 51

`
log2p

pr
d~t2r ln p!, ~46!

where the sum runs over the prime numbersp. To write
down R(t) in terms of the classical Ruelle-Pollicott res
nances, we need to compute the corresponding spectra
terminant, or Smalez function. The result, obtained from
Eqs.~21! and ~45! is @13#

Z~s!5z21~12s!, ~47!

where z(s)5(n51
` n2s is the Riemann zeta function. Con

trary to general expectations in bounded hyperbolic syste
@21#, Z(s) is not entire for the Riemann dynamics, but mer
morphic. The analytic structure ofZ(s) follows from that of
z(s): ~a! zero ats50, gg51; ~b! poles ats51/26 i t a ,
gg52ga ; ~c! poles ats5112k, k51,2, . . . ,gg521.

Assuming the Riemann hypothesis, theta are real and
define the position of theath zero ofz(s) along the critical
line, of multiplicity ga>1. The pole of the Riemannz func-
tion transforms into the ergodic zero ofZ(s). The position of
the complex Ruelle-Pollicott resonances coincide here w
the complex zeros of the Riemannz function, but these are
not zeros ofZ(s), but poles. Other real poles ofZ(s) are
generated by the so-called trivial zeros of the Riemannz
function, now located on the real positive axis. The glob
properties of the distribution of the singularities ofZ(s) for
the Riemann dynamics satisfy the general requirement
fully chaotic systems, with the important oddness related
the occurrence of some poles in place of zeros.

From Eq.~22! and the analytic structure ofZ(s) ~assum-
ing ga51), the functionR(t) may be written,

R~t!512
e23t

12e22t
22e2t/2(

a51

`

cos~ tat!. ~48!

The ‘‘anomalous’’ minus signs that appear in the rhs of t
equation reflect, again, the presence of poles inZ(s). The
physical interpretation of these signs, and of the closely
lated minus sign that appears in front of the oscillatory p
of the density of the Riemann zeros@31#, is unclear for the
moment, though an appealing possibility was suggeste
Ref. @32#.

The functionR(t), here interpreted as the trace of th
classical evolution operator, is in fact a well-known functio
in number theory,
4-10
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R~t5 ln x!5
dc~x!

dx
,

wherec(x)5(n<xL(n) @L(n) is the Von-Mangoldt func-
tion# @18#. By inverting Eq.~46!, as in Sec. IV, and using Eq
~48!, a formula for the density of the logarithm of the prim
numbers is obtained, given by Eq.~28! with the appropriate
identifications and replacements dictated by Eq.~45!. The
result coincides, up to a change of variable, with Rieman
formula. It can be integrated to obtain the counting functi
These results stress the strong similarities that exist betw
number theory and the theory of dynamical systems.

The Ruellez function ~4! coincides with the Riemannz
function @30#, ZR(s)5)p(12p2s)215z(s). The approxi-
mation ~34! is therefore exact in this case, since Eq.~32! is
@cf. Eq. ~47!#.

VI. CONCLUDING REMARKS

Two different explicit formulas for the densityr(t) of
periods of the primitive periodic orbits of fully chaotic cla
sical systems have been obtained. Both provide a harm
decomposition ofr(t), where the complex zeros and pol
~if any! of the correspondingz function are related to the
elementary frequencies of the oscillatory terms, while
real ones contribute to the smooth part. In one case, thz
function is the spectral determinantZ(s). It is assumed to be
an entire function; its zeros, denotedg, are the eigenvalue
of the classical evolution operator~usually called Ruelle-
Pollicott resonances!. In the second formulation, the releva
function is the Ruellez function ZR(s). In contrast to the
spectral determinant, this function has a meromorphic ex
sion in the complex plane. The relation between both
proaches was discussed in some detail.

The zero ofZ(s) located at the origin@or, alternatively,
the pole ofZR(s) located ats5htop] provides the leading
average growth of the density of periods of periodic orb
r̄(t);ehtopt/t,t→`. We found exponentially large sub
dominant corrections to the leading term that arise from
same zero~or pole!, and that are responsible for the ma
deviations observed numerically in billiards in a surface
constant negative curvature.

The zero ofZ(s) at the origin reflects a generic proper
of hyperbolic systems, the existence of an equilibrium dis
bution described by the microcanonical measure. What ab
the rest of the spectrum? No generic statements are kno
aside the fact that Re(g)>0, that resonances with arbitraril
large imaginary part should exist, and that complex re
nances come in symmetric pairs~cf Sec. IV!. There are,
however, some hints on what could probably be the gen
structure, if any, of the low-lying spectrum ofZ(s) ~e.g.,
resonances with the smaller real part!, that we would like to
discuss now. This low-lying part of the spectrum describ
the long time dynamics of the system. For simplicity, fro
now on we restrict the discussion to the case of billiards.
have in mind ‘‘generic’’ systems with a discrete spectrum
the classical evolution operator~exponential decay!. We also
restrict to ballistic systems~i.e., billiards whose shape pro
02620
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duces a chaotic motion!, and are excluding disordered sy
tems.

In Sec. V we saw that for billiards on constant negati
curvature the low-lying spectrum consists of the ergodic z
at g050, and of an infinite number of zeros located on t
line Re(s)5htop/2. This structure also follows for other sys
tems from semiclassical arguments. For a fully hyperbo
billiard, Gutzwiller’s trace formula for the density of quan
tum eigenvalues takes the form

rQ~ t !5(
a

d~ t2ta!'r̄Q~ t !

1
1

p (
p,r

tp

Audet~M p
r 21!u

cos~rt tp!.

As in Sec. V A,tp denotes here the length of the period
orbits p and ta are the~eigen! wave numbers;r̄Q(p) is the
Weyl term, and we have neglected Maslov indices. Fou
inverting this formula with respect tot, and using the ap-
proximation ~32!, we obtain the following formula for the
density of periods:

r~t!'
ehtopt

t
1

2

t
ehtopt/2(

a
cos~ tat!. ~49!

This is precisely the leading order density that is obtain
from Eq. ~28! assuming thatZ(s) has a simple zero at th
origin and complex zeros concentrated on the critical l
Re(s)5htop/2. Thus, the Hadamard-Gutzwiller model o
Sec. V as well as the generalization Eq.~49! suggest that the
generic low-lying spectrum of the classical evolution ope
tor of fully chaotic billiards consists of a simple zero at th
origin plus an infinite sequence~extending to arbitrary large
imaginary parts! of complex symmetric zeros located on th
line Re(s)5htop/2. A corresponding structure follows fo
ZR(s) by transforming zeros into poles located athtop2g.
This first hypothesis about the location of the complex ze
of Z(s) is reminiscent to that of Riemann in number theo

For the negative curvature model and in the inverse f
mula ~49!, the imaginary part of each Ruelle-Pollicott res
nance located on the line Re(s)5htop/2 coincides with a
quantum wave number. This happens because of impor
non genericities of those systems: the corresponding se
classical trace formula~the Selberg trace formula! is exact,
and Maslov indices are zero. If in Eq.~49! the Maslov indi-
ces are not neglected~and correction terms are taken in
account!, the connection with the quantum wave numbers
generically lost. The simplest effect of these phases would
to produce a shuffling of the resonances, without mov
them out of the line Re(s)5htop/2, and without changing
their statistical properties. Some arguments in favor of t
will be given below. Concerning the distribution of the e
genvalues of the classical evolution operator, our sec
guess is therefore that asymptotically~i.e., for resonances
located far from the real axis! the statistical properties of th
imaginary part of the Ruelle-Pollicott resonances located
the critical line Re(s)5htop/2 coincide with those of the cor
4-11
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responding quantum~eigen! wave numbers, which are
random-matrix-like generically. This second hypothe
could be seen as an extension of the Bohigas-Giann
Schmit conjecture@33# to the statistical properties of th
spectrum of the classical evolution operator. This way,
random matrix properties in fully chaotic systems wou
have a fully classical counterpart.

In semiclassical theories, the quantum correlations can
related to correlations acting among the actions of the p
odic orbits @2#. In scaling systems like billiards, the actio
coincides, up to a constant factor, with the period~or length!.
Therefore action correlations are equivalent to period co
lations. Since, as we have here shown, the density of per
of periodic orbits can be expressed in terms of the eigen
ues of the classical evolution operator, it follows that t
correlations between periods of periodic orbits can be
pressed in terms of correlations acting among the Rue
Pollicott resonances. The quantum spectral correlations
thus mapped, via semiclassics, into classical spectral co
lations. Through this connection, the RMT conjecture of
quantum fluctuations should have a classical counterp
which applies to the fluctuation properties of the position
the complex plane of the Ruelle-Pollicott resonances. T
gives some support to our second hypothesis.

The two previous conjectures determine the gross feat
of the low-lying spectrum of the evolution operator in ful
chaotic billiards and, as a consequence, of the long time
havior of the density and correlations of periodic orbits. T
random-matrix universality observed in quantum syste
may have, by semiclassical arguments, a classical cou
part. The ‘‘ergodic’’ zero located at the origin certainly pla
an important role@12#. We are here suggesting a clear a
explicit additional link between the statistical properties
the classical and quantum spectrums, now involving
complex resonances.

To conclude, we briefly discuss the spectrum of the e
lution operator for discrete maps, and show that import
qualitative differences with respect to smooth flows occ
We have in mind area-preserving classically chaotic m
acting on two-dimensional phase spaces, like, for exam
the kicked Harper or the kicked top. The time now takes o
discrete values,t5n, n51,2,3, . . . ~in some arbitrary
units!, and the set of possible lengths of periods of perio
orbits is trivial, just integers. The ‘‘return probability’’ o
trace of the evolution operator is still expressed as a s
over the periodic points@4#,

R~n!5trL n5(
p

(
r 51

`
np

udet~M p
r 21!u

dn,rnp
5(

g
gge2gn,

~50!

wherenp is the ~integer! period of the periodic orbitp, and
theg ’s are the Ruelle-Pollicott resonances. The latter are
zeros of Eq.~21!, making the replacementtp→np . Inverting
Eq. ~50! as in Sec. IV, a formula follows for the number o
primitive periodic orbits of periodn,
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N~n!5
1

n (
m/n

m~m!udet~Mn/m21!u(
g

gge2gn/m.

~51!

As in Sec. IV, we have ignored the fluctuations of the fac
udet(M ,21)u which may occur at short periods. An altern
tive formula, equivalent to Eq.~16!, is obtained from
the corresponding Ruelle z function, N(n)
5n21(m/nm(m)(hghehn/m, where theh ’s are the poles and
zeros of Eq.~4! with the replacement mentioned abov
Since the timet5n changes by unit steps, the smallest sc
over which temporal variations can occur is 1. It follow
from Eq. ~50! that the complex resonances satisfy2p
,Im(g)<p. Therefore, the natural variable to analyze d
crete maps is nots, but ratherz5e2s. By this transforma-
tion, the ergodic zerog050 is located atz51, and other real
and complex Ruelle-Pollicott resonances with Re(g).0 lie
inside the unit diskuzu<1.

Substantial differences are expected between the struc
of the spectrum ofZ(s) and ZR(s) for chaotic maps with
respect to that of chaotic continuous flows, and in particu
with respect to chaotic billiards. The main reason for tha
the simplicity of the spectrum of periods of periodic orbits
the case of maps. Since that spectrum is made of integers
only nontrivial information carried by Eqs.~50! and ~51!
concerns variations in the stability factors and number
orbits of a given period~e.g., average coarse-grained prop
ties!. This is in contrast with continuous chaotic billiard
where a much more subtle and delicate information is
coded in the spectrum of resonances, namely, the nontr
distribution of the periods of the orbits. In maps, that dist
bution collapses to a simple and highly degenerate spectr
The simplicity of the average properties encoded in Eq.~50!,
without fine-grained structure, implies a simpler spectrum
resonances. In particular, no concentration of resonan
over a ‘‘critical’’ line is expected to occur~this would be a
critical circle inside the unit disk in thez variable!, since its
presence is associated with a harmonic decomposition of
distribution of periods inR(t), whereasR(n) strictly tends
to a constant for long times. In hyperbolic maps, isola
resonances, without any special structure in the radial di
tion, are therefore expected generically inside the unit cir
No particular connection with random-matrix theory is the
fore established concerning the statistical properties of
resonances of chaotic maps. This picture seems to be
firmed by recent numerical simulations@14#.

Semiclassically, the reason for the important differenc
with respect to chaotic billiards is also clear. Random ma
requires correlations between actions of periodic orbits.
scaling systems like billiards, the action of an orbit is pr
portional to its length~or period!. Therefore action correla
tions translate into length~or period! correlations, which in
turn, through Eq.~28!, translate into resonance correlation
In maps, the set of possible periods~which is trivial! is not
related to that of actions~which is nontrivial!. Therefore, the
spectrum of the evolution operator, which is closely rela
to the spectrum of periods of the periodic orbits, loses
connection with random-matrix theory.
4-12
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@4# P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vatta
Classical and Quantum Chaos~Niels Bohr Institute, Copen-
hagen, 2001!, www. nbi. dk/ChaosBook/

@5# P. Gaspard,Chaos, Scattering and Statistical Mechanics~Cam-
bridge University Press, Cambridge, UK, 1998!.

@6# M. C. Gutzwiller,Chaos in Classical and Quantum Mechani
~Springer-Verlag, New York, 1990!.

@7# R. Balian and C. Bloch, Ann. Phys.~N.Y.! 69, 76 ~1972!.
@8# His remarks make reference to the semiclassical connec

between the set of periodic orbits and the quantum eigenva
@23#.

@9# P. Dahlqvist, Physica D83, 124 ~1995!.
@10# O. Agam, B.L. Altshuler, and A.V. Andreev, Phys. Rev. Le

75, 4389~1995!.
@11# K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett.85, 2737

~2000!; S. Sridhar and W.T. Lu, J. Stat. Phys.108, 755~2002!.
@12# A.V. Andreev, O. Agam, B.D. Simons, and B.L. Altshule

Phys. Rev. Lett.76, 3947~1996!.
@13# O. Bohigas, P. Leboeuf, and M.J. Sa´nchez, Found. Phys.31,

489 ~2001!.
@14# J. Weber, F. Haake, P.A. Braun, C. Manderfeld, and P. Seb

Phys. A 34, 7195 ~2001!; S. Nonnenmacher, e-prin
arXiv:nlin.CD/0301014; I. Garcı´a-Mata, M. Saraceno, an
M.E. Spina, e-print nlin.CD/0301025.

@15# R. Aurich and F. Steiner, Phys. Rev. A45, 583 ~1992!.
@16# S. Smale,The Mathematics of Time~Springer-Verlag, New

York, 1986!.
@17# D. Ruelle,Statistical Mechanics, Thermodynamic Formalis

~Addison-Wesley, Reading, MA, 1978!.
02620
n
es

J.

@18# H. M. Edwards,Riemann’s Zeta Function~Academic Press,
New York, 1974!.

@19# N.X. Chen, Phys. Rev. Lett.64, 1193~1990!; J. Maddox, Na-
ture ~London! 344, 377 ~1990!; D. Ming, T. Wen, J. Dai, X.
Dai, and W.E. Evenson, Phys. Rev. E62, R3019~2000!; N.V.
Surovtsev,ibid. 64, 061102~2001!.
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